

August 2, 2010

Mr. Kenneth Bardo - LU-9J U.S. EPA Region V Corrective Action Section 77 West Jackson Boulevard Chicago, IL 60604-3507 **VIA FEDEX**

Re:

Long-Term Monitoring Program Evaluation of 3008 - 2010 Data

Solutia Inc., W. G. Krummrich Plant, Sauget, IL

Dear Mr. Bardo:

As noted when the 2nd Quarter 2010 Data Report for the subject program was submitted July 22, enclosed please find a report evaluating all of the long-term monitoring data collected from 3rd quarter 2008 through 2nd quarter 2010, i.e., since the February 2008 Final Decision, and making recommendations for changes going forward. Reiterating those recommended changes from the enclosed report:

- reduce groundwater sampling frequency from quarterly to semiannually during the first and third quarters of each year;
- eliminate sampling and analysis for semivolatile organic compounds (specifically 4-chloroaniline, 2-chlorophenol, 1,4-dioxane, and 1,2,4-trichlorobenzene) in the five Benzene Storage Area (BSA) monitoring wells; and
- discontinue phospholipid fatty acids (PLFA) analyses and compound-specific isotope analyses (stable isotope probing [SIP]).

In addition, Solutia proposes to discontinue semiannual sampling of surface water and sediment from the Mississippi River for volatile and semivolatile organic compounds. As demonstrated by the attached tables of all such data collected from 3^{rd} quarter 2008 through 2^{nd} quarter 2010, there was only one detection (72 ug/kg chlorobenzene in R-3 sediment during 3^{rd} quarter 2009) out of 216 possibilities (2 media x 3 sample locations x 9 analytes x 4 sampling events), and that was suspect, given corresponding results from 3^{rd} quarter 2008 (4.4J < 4.8 ug/kg), 1^{st} quarter 2009 (2.9J < 4.4 ug/kg), and

1st quarter 2010 (< 5 ug/kg) were less than detection limits. Furthermore, including the two estimated (J) detections just noted, there were only six total estimated detections.

I'd appreciate your prompt response because the 3rd quarter 2010 sampling is scheduled to take place this month.

If you have any questions or comments regarding this report, please contact me at (314) 674-3312 or gmrina@solutia.com

Sincerely,

Gerald M. Rinaldi

Manager, Remediation Services

if the finds

Attachment and Enclosure

cc: Distribution List

DISTRIBUTION LIST

Long-Term Monitoring Program
Evaluation of 3Q08 - 2Q10 Data
Solutia Inc., W. G. Krummrich Plant, Sauget, IL

<u>USEPA</u>

Stephanie Linebaugh USEPA Region 5 - SR6J, 77 West Jackson Boulevard, Chicago, IL 60604

IEPA

James Moore IEPA Bureau of Land, 1021 North Grand Avenue East, Springfield, IL 62706

Booz Allen Hamilton

Dan Briller Booz Allen Hamilton, 8283 Greensboro Drive, McLean, VA 22102

Solutia

Justin Prien 500 Monsanto Avenue, Sauget, IL 62206-1198

Results of Long-Term Monitoring of SURFACE WATER

					3rd Quarter 2008	1st Quarter 2009	3rd Quarter 2009	1st Quarter 2010
ID	. Media	Units	Chemical Group	Chemical	Result	Result	Result	Result
R-1	Surface Water	ug/L	VOCs	Benzene	<1	<1	<1	<1
R-1	Surface Water	ug/L	VOCs	Chlorobenzene	<1	<1	<1	<1
R-1	Surface Water	.ug/L	VOCs	1,2-Dichlorobenzene	<1	<1	<1	<1
R-1	Surface Water	ug/L	VOCs	1,3-Dichlorobenzene	<1	<1	<1	<1
R-1	Surface Water	ug/L	VOCs	1,4-Dichlorobenzene	<1	<1	<1	<1
R-1	Surface Water	ug/L	SVOCs	P-Chloroaniline	< 19	< 19	< 19	< 19
R-1	Surface Water	ug/L	SVOCs	2-Chiorophenol	< 9.7	< 9.7	< 9.5	< 9.4
R-1	Surface Water	ug/L	SVOCs	1,4-Dioxane	< 9.7	< 9.7	< 9.5	< 9.4
R-1	Surface Water	ug/L	SVOCs	1,2,4-Trichlorobenzene	< 9.7	< 9.7	< 9.5	< 9.4
R-2	Surface Water	ug/L	VOCs	Benzene	<1	<1	<1	<1
R-2	Surface Water	ug/L	VOCs	Chlorobenzene	<1	<1	<1	<1
R-2	Surface Water	ug/L	VOCs	1,2-Dichlorobenzene	<1	<1	<1	<1
R-2	Surface Water	ug/L	VOCs	1,3-Dichlorobenzene	<1	<1	<1	<1
R-2	Surface Water	ug/L	VOCs	1,4-Dichlorobenzene	<1	<1	<1	0.35 J
R-2	Surface Water	ug/L	SVOCs	P-Chloroaniline	< 19	< 19	< 19	< 19
R-2	Surface Water	ug/L	SVOCs	2-Chlorophenol	< 9.7	< 9.7	< 9.5	< 9.4
R-2	Surface Water	ug/L	SVOCs	1,4-Dioxane	< 9.7	< 9.7	< 9.5	< 9.4
R-2	Surface Water	ug/L	SVOCs	1,2,4-Trichlorobenzene	< 9.7	< 9.7	< 9.5	< 9.4
R-3	Surface Water	ug/L	VOCs	Benzene	<1	<1	<1	<1
R-3	Surface Water	ug/L	VOCs	Chlorobenzene	<1	<1	<1	<1
R-3	Surface Water	ug/L	VOCs	1,2-Dichlorobenzene	<1	<1	<1	<1
R-3	Surface Water	ug/L	VOCs	1,3-Dichlorobenzene	<1	<1	<1	<1
R-3	Surface Water	ug/L	VOCs	1,4-Dichlorobenzene	< 1	<1	<1	0.37 J
. R-3	Surface Water	ug/L	SVOCs	P-Chloroaniline	< 19	< 19	< 19	< 19
R-3	Surface Water	ug/L	SVOCs	2-Chlorophenol	< 9.7	< 9.7	< 9.5	< 9.4
R-3	Surface Water	ug/L	SVOCa	1,4-Dioxane	< 9.7	< 9.7	< 9.5	< 9.4
R-3	Surface Water	ug/L	SVOCs	1,2,4-Trichlorobenzene	< 9.7	< 9.7	< 9.5	< 9,4

Notes:

μg/L = micrograms per liter

< = Result is non-detect, less than the reporting limit

J = Estimated Value

NA = Not Analyzed

BOLD indicates concentration greater than the reporting limit

Results of Long-Term Monitoring of SEDIMENT

					3rd Quarter 2008	1st Quarter 2009	3rd Quarter 2009	1st Quarter 2010
ID	Media	Units	Chemical Group	Chemical	Result	Result	Result	Result
R-1	Sediment	ug/kg	VOCs	Benzene	< 4.8	< 13	< 5.3 J	< 4.7
R-1	Sediment	ug/kg	VOCs	Chlorobenzene	< 4.6	< 13	< 5.3 J	< 4.7
R-1	Sediment	ug/kg	VOCs	1,2-Dichlorobenzene	< 4.6	< 13	< 5.3 J	< 4.7
R-1	Sediment	ug/kg	VOCs	1,3-Dichlorobenzene	< 4.6	< 13	< 5.3 J	< 4.7
R-1	Sediment	ug/kg	VOCs	1,4-Dichlorobenzene	< 4.6	< 13	< 5.3 J	< 4.7
R-1	Sediment	ug/Kg	SVOCs	P-Chloroaniline	< 840	< 930	< 840	< 810
R-1	Sediment	ug/Kg	SVOCs	2-Chlorophenol	< 420	< 470	< 420	< 410
R-1	Sediment	ug/Kg	SVOCs	1,4-Dioxane	< 420	< 470	< 420 J	< 410
R-1	Sediment	ug/Kg	SVOCs	1,2,4-Trichlorobenzene	< 420	< 470	< 420	< 410
R-2	Sediment	ug/kg	VOCs	Benzene	< 4.9	< 4.8	< 4.9	< 5
R-2	Sediment	ug/kg	VOCs	Chlorobenzene	< 4.9	< 4.8	< 4.9	< 5
R-2	Sediment	ug/kg	VOCs	1,2-Dichlorobenzene	< 4.9	< 4.8	< 4.9	< 5
R-2	Sediment	ug/kg	VOCs	1,3-Dichlorobenzene	< 4.9	< 4.8	< 4.9	< 5
R-2	Sediment	ug/kg	VOCs	1,4-Dichlorobenzene	< 4.9	< 4.8	< 4.9	< 5
R-2	Sediment	ug/Kg	SVOCs	P-Chloroaniline	< 800	< 790	< 810	< 780
R-2	Sediment	ug/Kg	SVOCs	2-Chlorophenol	< 400	< 390	< 400	< 390
R-2	Sediment	ug/Kg	SVOCs	1,4-Dioxane	< 400	< 390	< 400	< 390
R-2	Sediment	ug/Kg	SVOCs	1,2,4-Trichlorobenzene	< 400	< 390	< 400	< 390
R-3	Sediment	ug/kg	VOCs	Benzene	< 4.8	< 4	3.5 J	< 5
R-3	Sediment	ug/kg	VOCs	Chlorobenzene	4.4 J	2.9 J	72	< 5
R-3	Sediment	ug/kg	VOCs	1,2-Dichlorobenzene	< 4.8	<4	< 4.7	< 5
R-3	Sediment	ug/kg	VOCs	1,3-Dichlorobenzene	< 4.8	<4	< 4.7	< 5
R-3	Sediment	ug/kg	VOCs	1,4-Dichlorobenzene	< 4.8	< 4	1.6 J	< 5
R-3	Sediment	ug/Kg	SVOCs	P-Chloroaniline	< 680	< 810	< 730	< 770
R-3	Sediment	ug/Kg	SVOCs	2-Chlorophenol	< 340	< 400	< 360	< 390
R-3	Sediment	ug/Kg	SVOCs	1,4-Dioxane	< 340	< 400	< 360 J	< 390
R-3	Sediment	ug/Kg	SVOCs	1,2,4-Trichlorobenzene	< 340 -	< 400	< 360	< 390

Matas:

μg/Kg = micrograms per kilogram

< = Result is non-detect, less than the reporting limit

J = Estimated Value

NA = Not Analyzed

BOLD Indicates concentration greater than the reporting limit

Technical Memorandum

Date: July 29, 2010

To: Jerry Rinaldi - Solutia Inc.

cc: Bob Billman - URS Corporation, St. Louis

From: Wade A. Narin van Court, P.E. -

URS Corporation, Hallowell, Maine

Subject: 2nd Quarter 2010 Evaluation of the Long-Term Monitoring Program

at the W. G. Krummrich Facility

1.0 INTRODUCTION

The U.S. Environmental Protection Agency (USEPA) issued a Final Decision on February 26, 2008, regarding remediation of impacted groundwater originating from Solutia Inc. (Solutia)'s W. G. Krummrich Facility located in Sauget, Illinois, and hereafter referred to as "the Site." The Final Decision called for a plan to evaluate the effectiveness of monitored natural attenuation (MNA) in controlling two groundwater plumes emanating from beneath the Site, one originating from a former benzene storage area (BSA) that contains dissolved benzene (referred to as the BSA Plume) and one originating below a former chlorobenzene process area (CPA) that contains dissolved chlorobenzenes (referred to as the CPA Plume). Downgradient of the source areas, the plumes appear to be co-mingled.

A Long-Term Monitoring Program (LTMP) work plan was developed by URS to generate data that could be used to assess whether the plumes are naturally attenuating. The activities implemented under the work plan include collecting quarterly groundwater samples from five monitoring wells located along the alignment of the BSA Plume (i.e., monitoring wells BSA-MW-1S, BSA-MW-2D, BSA-MW-3D, BSA-MW-4D, and BSA-MW-5D) and from five wells located along the alignment of the CPA Plume (i.e., monitoring wells CPA-MW-1D through CPA-MW-5D) using low-flow sampling techniques. Indicator parameters monitored during purging of the wells using a flow cell include pH, temperature, specific conductance, redox potential, and dissolved oxygen. Groundwater samples collected during the sampling events are analyzed for the following parameters: benzene, monochlorobenzene (CB), dichlorobenzene (DCB) isomers (1,2-DCB, 1,3-DCB and 1,4-DCB) 1,2,4-trichlorobenzene, total and dissolved organic carbon, total and dissolved iron and manganese, nitrate, sulfate, dissolved gases (i.e., carbon dioxide, ethane, ethylene, and methane), chloride, alkalinity, phospholipid fatty acids, and microorganism community structure. Selected samples were also analyzed for 2-chlorophenol (all wells), 4-chloroaniline (wells CPA-MW-3D, CPA-MW-4D, and CPA-MW-5D), and 1,4-dioxane (wells BSA-MW-2D, BSA-MW-3D, BSA-MW-4D, and BSA-MW-5D) on a semi-annual basis. In addition to these parameters, samples collected from wells BSA-MW-2D and CPA-MW-3D were analyzed by compound-specific isotope analysis (CSIA), which can provide direct evidence of biodegradation of a particular constituent of interest.1 The supporting data used for this evaluation are presented in Attachment A.

Page 1 of 21 July 2010

¹ CSIA is performed by deploying a biotrap (a Stable Isotope Probe [SIP]) in a well that is screened within a plume. The biotrap was baited with the constituents of interest (in this case benzene and CB) that have been labeled with carbon 13 (13C). After a period of time, the trap is retrieved and the biomass that accumulates on the trap is analyzed for 13C. If the biomass is enriched with 13C, it can be concluded with certainty that microorganisms within the aquifer around the well are biodegrading the constituent of interest.

Figure 1 shows the Site, the area of interest extending from the Site westward (i.e., hydraulically downgradient) to the Mississippi River, the locations of the BSA and CPA, and the monitoring wells used to delineate and characterize the BSA and CPA Plumes.

According to the LTMP work plan dated May 2009, the effectiveness of MNA is to be evaluated after completing one year and two years (i.e., four quarters and eight quarters) of sampling. An interim evaluation was submitted in October 2009 after the 2nd quarter 2009 (2Q09) event, the fourth such event following the February 2008 Final Decision. As of the 2Q10 event, two years of quarterly LTMP monitoring (eight monitoring events) has been completed. This memorandum provides an assessment of these data with respect to demonstrating the occurrence of MNA of benzene and chlorobenzenes in groundwater.

According to the LMTP work plan, MNA of the BSA and CPA plumes is to be evaluated based upon the following:

- 1. A demonstration of a clear and meaningful trend of decreasing contaminant mass or concentration;
- 2. An indirect demonstration of the types and rates of natural attenuation processes active at the Site; and
- 3. Direct evidence of the occurrence of biodegradation processes at the Site.

The assessment presented in this memorandum is focused specifically on the following constituents of interest (COI): benzene and chlorobenzenes (CB and DCB isomers). Following a brief review of the relevant background information at the Site in **Section 2.0** and the properties and natural attenuation mechanisms of the COI in **Sections 3.0** and **4.0**, the evaluation of MNA at the Site, based upon the data collected to date, is presented in **Section 5.0**. Conclusions and recommendations are presented in **Sections 6.0** and **7.0**, respectively.

2.0 RELEVANT BACKGROUND INFORMATION

A number of investigations had been performed to characterize the Site and the groundwater plumes downgradient from the Site prior to starting the current LTMP to evaluate MNA. In particular, these investigations obtained data used to determine the aquifer characteristics and existing hydrogeologic conditions, and to assess the extent of the BSA and CPA Plumes. The existing information relevant to the evaluation of MNA is discussed in the following sections.

2.1 AQUIFER CHARACTERISTICS

Aquifer characteristics need to be considered when evaluating MNA. For example, groundwater velocities, which are determined by hydraulic properties, e.g., hydraulic conductivity and effective porosity, are used to calculate attenuation rate constants, as described later in this memorandum.

Based on the description from the Technology Selection Report (Booz Allen Hamilton, 2007), soils beneath the Site consist of poorly-sorted fine and medium sands with traces of silt and gravel and occasional clay lenses. In the Site vicinity, depth to bedrock is approximately 110 feet below the

Page 2 of 21 July 2010

ground surface (bgs), and approximately 140 feet below the crest of 30-foot high levees along the banks of the Mississippi River.

Three distinct hydrologic units have been identified in the unconsolidated soil which, downward from the ground surface, are the shallow hydrologic unit (SHU), the medium hydrologic unit (MHU) and the deep hydrologic unit (DHU). The SHU is approximately 30 feet thick; the MHU and DHU are each approximately 40 feet thick and are similar in composition. With the exception of BSA source area well BSA-MW-1S, the wells monitored for MNA parameters are screened in the DHU. Based upon the similarity in grain-size composition, aquifer properties for SHU, MHU and DHU were assumed to be similar for this MNA evaluation. The aquifer properties used in the analyses of MNA are summarized in **Table 1**.

Table 1: Typical Soil Properties Value Used in MNA Evaluation Analyses (Source: URS, 2008 unless noted)					
Hydraulic Gradient (i)	0.0014 feet/foot (BSA Plume) 0.0013 feet/foot (CPA Plume)				
Bulk Density (ρ _b , dry unit weight)	118.3 pounds per cubic foot (1,895 kilograms per cubic meter)				
Porosity (n)	28.8%				
Effective Porosity (n _e)	20% (Env. Tech., 1997)				
Fraction Organic Carbon (f _{oc})	0.0016				

2.2 SITE HYDROGEOLOGY

Hydrogeologic conditions are also an important consideration when evaluating MNA. Site data were reviewed to develop an understanding of the hydrogeologic conditions that could influence the interpretation of the occurrence and extent of MNA. Relevant hydrogeologic conditions at the Site at briefly discussed below.

An important hydrologic feature that affects groundwater flow beneath the Site is the Mississippi River, which is interpreted to typically be the groundwater discharge point for all three hydrologic units. However, the groundwater that discharges into the Mississippi River is not adversely affecting water quality, based on the results of past and ongoing surface water and sediment sampling.

Since Spring 2006², the stage of the Mississippi River downgradient of the Site has varied over 30 feet, from an approximate elevation of 380 feet mean sea level (MSL) to 410 feet MSL. During periods when the stage is raised (i.e., generally above elevation 390 feet MSL), it has been observed to be higher than groundwater levels in the MHU and/or DHU immediately adjacent to the river and appears to be a source of recharge to the MHU and DHU groundwater systems during these high river stages. As such, the Mississippi River may provide a source for electron acceptors (e.g., nitrate) during these periods. In addition, higher water levels may mobilize sulfate, which may serve as an electron acceptor during biodegradation of COI, from the vadose zone into groundwater.

Page 3 of 21 July 2010

² The first quarterly event for the Plume Stability Monitoring Program occurred in March 2006.

Additionally, hydraulic gradients occur in three dimensions (i.e., groundwater flows laterally and vertically in space), and vertical hydraulic gradients, as well as the horizontal hydraulic gradients, affect the transport of COI in the groundwater at the Site. To illustrate the effect of the vertical gradients, groundwater equipotential contours were developed for two cross-sections extending along the axes of the CPA and BSA Plumes. The groundwater equipotential contours are presented as cross-section A-A' (Figure 2) for the CPA Plume and cross-section B-B' (Figure 3) for the BSA Plume. These equipotential contours indicate that, under typical groundwater flow conditions, there is a downward hydraulic gradient in the vicinity of the Site and to the east, and there is an upward hydraulic gradient adjacent to the Mississippi River. Based on the equipotential contours, the likely flowpaths for the COI from the source areas to the river are shown on Figures 2 and 3.

One final consideration that may affect the transport of COI from the CPA and BSA is the Groundwater Migration Control System (GMCS) installed at Sauget Superfund Site R, which is adjacent to the Mississippi River and southwest of the Site. The GMCS consists of a three-sided vertical barrier and groundwater extraction wells. The barrier is keyed into the underlying bedrock and open to the west, so groundwater from impacted areas to the east are intercepted while the amount of river water intercepted by the extraction wells is minimized. During normal river conditions, the extraction pumps operate to create a groundwater gradient that captures groundwater flow into the GMCS from the east.

2.3 EXTENT OF THE BSA AND CPA PLUMES

The results of the previous investigations at the Site indicate that there is no trend in the concentrations of benzene, CB, and DCB at the lateral edges of the plumes (i.e., in monitoring wells PSMW-2, PSMW-6, PSMW-9, PSMW-10, PSMW-13, and PSMW-17). Furthermore, the COI concentrations appear to be generally stable (i.e., the plume is not expanding at its margins). At PS-MW-01, upgradient of the Site, there appears to be an increasing trend in the benzene concentration. This indicates that there may be a source of benzene present upgradient of the BSA and CPA (i.e., offsite). Vertical groundwater equipotential contours presented on **Figures 2 and 3** indicate that the upgradient source of benzene may be contributing to groundwater impacts in the CPA and/or BSA plume area.

3.0 PROPERTIES OF CONSTITUENTS OF INTEREST AND NATURAL ATTENUATION

The COI that are the focus of this MNA evaluation include benzene, CB, and DCB (total and its isomers).

Natural attenuation involves a reduction of the concentration and/or mass of a given COI in groundwater through several processes that can include the following:

- Dispersion a reduction in concentration of a COI as a result of the expansion of a plume during advective transport;
- **Dilution** a reduction in concentration of a COI generally through recharge over the area of the plume or due to mixing with clean groundwater;
- Sorption a reduction in the dissolved concentration of a COI through sorption to organic carbon or metallic oxides on mineral surfaces in soil matrix or bedrock fractures;

- Volatilization a reduction in the dissolved or sorbed concentration of a COI due to partitioning (diffusion) from soil or groundwater into soil vapor;
- Chemical Transformation a reduction in concentration and mass of a constituent of interest through abiotic processes such as hydrolysis; and
- **Biodegradation** a reduction of both the mass and concentration of a COI through biologically mediated reactions that are facilitated by native microorganisms living on the soil. Biodegradation is the primary attenuation mechanism that results in the destruction of organic compounds and a reduction in contaminant mass.

The vast majority of these processes are, in all likelihood, contributing to MNA of the plumes.

Chemical properties of the COI that may affect the natural attenuation processes described above include Henry's Law Constant (volatilization), along with solubility and organic carbon partitioning coefficients (sorption and biodegradation). For the COI being evaluated, these properties are summarized in **Table 2**. Following is a general discussion of these data and their importance to natural attenuation processes.

Table 2: Chemical Properties for COI (Sources: ATSDR Toxicological Profiles)							
Constituent of interest	Density (grams/milliliter)	Henry's Law Constant (atmospheres, cubic meters/mole at 25°C)	Solubility (milligrams/liter [mg/l] at;20°C)	Organic Carbon Partitioning Coefficient (K _{oc} , liters/ kilogram)			
Benzene	0.8787 at 15 °C	5.5x10 ⁻³	1,880	58.9			
СВ	1.1058 at 20 °C	3.58x10 ⁻³	500	219			
1,2-DCB	1.3059 at 20 °C	1.92x10 ⁻³	156	324			
1,3-DCB	1.2884 at 20 °C	2.8x10 ⁻³	125	295			
1,4-DCB	1.46 at 20 °C	2.41x10 ⁻³	80	275			

The density of the COI presented above are representative of the compounds when present as a pure phase and provide information that can be used to infer the vertical position of where the most significant impacts in a groundwater system might occur. Benzene for example, has a density that is less than that of water (i.e., 0.9996 grams per milliliter). Therefore, when released as a pure phase and in sufficient quantities, benzene will tend to accumulate along the top of the capillary fringe and phreatic surface and the core of the plume will typically not penetrate deeply into the aquifer except in areas of strongly downward vertical hydraulic gradients. Conversely, CB and DCB are denser than water and when released in sufficient quantities, may penetrate to depths below the phreatic surface. The plumes generated from compounds denser than water can exhibit high and sometimes uniform concentrations over a large thickness of the aquifer.

Volatilization can be an important transfer mechanism for compounds that exhibit a Henry's Law Constant higher than 10⁻⁵ atm-m³/mol. Based upon these data, the COI are compounds that can readily partition from groundwater into soil vapor and volatilization could be an attenuation mechanism for the COI in groundwater at this Site.

Page 5 of 21 July 2010

Benzene is moderately soluble in water and CB and the DCB isomers are somewhat soluble in water. The solubilities of the COI are significant with respect to MNA in that more soluble compounds typically tend to be more readily biodegradable. In addition, a comparison of the concentration of a COI detected in groundwater to its water solubility can provide insight into parts of the plume where the reductions in concentration due to MNA may be more readily observed. For example, the concentration of benzene during the 2Q10 monitoring round at monitoring well BSA-MW-1 in the BSA source area was 840 mg/l; similarly, the concentration of CB was 16 mg/l at CPA-MW-1 near the chlorobenzene source area. Consequently, readily observable changes in concentrations of the COI due to MNA are more likely to occur in wells downgradient of the source areas and these particular wells.

The organic carbon partitioning coefficients of CB and the DCB isomers are greater than 200 liters per kilogram. Therefore, these COI are expected to adsorb appreciably to organic carbon in the soil, suspended solids, or sediments and sorption may be an important attenuation process for reducing concentrations of CB and DCB in groundwater. Consistent with its solubility, benzene has a lower organic carbon partitioning coefficient, more readily partitions into an aqueous phase, and may be more easily biodegradable as compared to CB or DCB.

4.0 BIODEGRADATION MECHANISMS

Biodegradation of benzene and chlorobenzenes (CB and DCB isomers) can occur under both aerobic and anaerobic conditions. In general, biodegradation of these COI are believed to proceed most rapidly under aerobic conditions where dissolved oxygen is present in groundwater at concentrations of several mg/l. Biodegradation of benzene, CB and the DCB isomers can also occur under anaerobic conditions via several different reaction pathways. Biodegradation under anaerobic conditions occurs when oxygen has been depleted, an alternative electron acceptor (e.g., nitrate, iron(III), sulfate, or carbon dioxide) is available, and microbes capable of using one of the alternative electron acceptors are present (ATSDR, 2007). Degradation reactions are listed below in order of increasingly anaerobic conditions. Geochemical data collected from Site monitoring wells (discussed later in this memorandum) when evaluated with respect to these stoichiometric equations can help to provide an understanding of the dominant mechanisms of biodegradation occurring within the plumes:

4.1.1 Benzene (C₆H₆) Reactions

- Benzene oxidation / aerobic respiration: 7.5O₂ + C₆H₆ ⇒ 6 CO₂ + 3H₂0
- Benzene oxidation / denitrification: 6NO₃ + 6H⁺ + C₆H₆ ⇒ 6CO₂ + 6H₂O + 3N₂
- Benzene oxidation / manganese reduction: 30H⁺ + 15MnO₂ + C₆H₆ ⇒ 6CO₂ + 15Mn²⁺ + 18H₂O
- Benzene oxidation / nitrate reduction: $3.75NO_3^- + C_6H_6 + 7.5H^+ + 0.75H_2O \Rightarrow 6CO_2 + 3.75NH_4^+$
- Benzene oxidation / iron reduction: $60H^{+} + 30Fe(OH)_{3} + C_{6}H_{6} \Rightarrow 6CO_{2} + 30Fe^{2+} + 78H_{2}O$
- Benzene oxidation / sulfate reduction: $7.5H^{+} + 3.75SO^{2}_{-4} + C_{6}H_{6} \Rightarrow 6CO_{2} + 3.75H_{2}S^{0} + 3H_{2}O$
- Benzene oxidation / methanogenesis: 4.5H₂O + C₆H₆ ⇒ 2.25CO₂ + 3.75CH₄

4.1.2 Chlorobenzene (C₆H₅Cl) Reactions

- CB oxidation / aerobic respiration: 7O₂ + C₆H₅CI ⇒ 6CO₂ + 2H₂O + H⁺ + CI⁻
- CB oxidation / denitrification: $5.6NO_3^- + 4.6H^+ + C_6H_5CI \Rightarrow 6CO_2 + 4.8H_2O + 2.8N_2 + CI^-$
- CB oxidation / manganese reduction: 14MnO₂ + 27H⁺ + C₆H₅Cl ⇒ 6CO₂ + 16H₂O + 14Mn²⁺ + Cl⁻
- CB oxidation / iron reduction: $28\text{Fe}(\text{OH})_3 + 55\text{H}^+ + \text{C}_6\text{H}_5\text{Cl} \Rightarrow 6\text{CO}_2 + 72\text{H}_2\text{O} + 28\text{Fe}^{2+} + \text{Cl}^{-1}$
- CB oxidation / sulfate reduction: $3.5SO^{2}_{4} + 6H^{+} + C_{6}H_{5}CI \Rightarrow 6CO_{2} + 2H_{2}O + 3.5H_{2}S^{0} + CI^{-}$
- CB oxidation / methanogenesis: 5H₂O + C₆H₅Cl ⇒ 2.5CO₂ + 3.5CH₄ + H⁺ + Cl⁻

4.1.3 Dichlorobenzene (C₆H₄Cl₂) Reactions

- DCB oxidation / aerobic respiration: 6.5O₂ + C₆H₄Cl₂ ⇒ 6CO₂ + 2H⁺ + H₂O + 2Cl⁻
- DCB oxidation / denitrification: $5.2NO_3 + 3.2H^+ + C_6H_4Cl_2 \Rightarrow 6CO_2 + 3.6H_2O + 2.6N_2 + 2Cl^-$
- DCB oxidation / manganese reduction:
 13MnO₂ + 24H⁺ + C₆H₄Cl₂ ⇒ 6CO₂ + 14H₂O + 13Mn²⁺ + 2Cl⁻
- DCB oxidation / iron reduction: $26Fe(OH)_3 + 50H^+ + C_6H_4CI_2 \Rightarrow 6CO_2 + 66H_2O + 26Fe^{2+} + 2CI^-$
- DCB oxidation / sulfate reduction: $3.25SO^{2}_{-4} + 4.5H^{+} + C_{6}H_{4}Cl_{2} \Rightarrow 6CO_{2} + H_{2}O + 3.25H_{2}S^{0} + 2Cl^{-}$
- DCB oxidation / methanogenesis: 5.5H₂O + C₆H₄Cl₂ ⇒ 2.75CO₂ + 3.25CH₄ + 2H⁻ + 2Cl⁻

5.0 ASSESSMENT OF NATURAL ATTENUATION

Consistent with the objectives of the work plan, demonstration of MNA involves the following three lines of evidence:

- Primary evidence: Primary lines of evidence of MNA include declining concentrations of COI that coincide with increases in certain biodegradation products (e.g., carbon dioxide and/or methane), concentration distributions that indicate stable or shrinking plumes, and compound-specific isotope analyses indicating reduction in the concentration of an isotopically marked electron donor and enrichment of the isotopic fraction of a specific isotope (e.g., carbon 13) in biomass.
- Secondary evidence: Secondary lines of evidence of MNA include depleted concentrations of electron acceptors (e.g., dissolved oxygen, nitrate, and sulfate) within the boundaries of the plume.

• **Tertiary evidence:** Tertiary lines of evidence include the presence of certain types of bacteria in the aquifer that are capable of degrading constituents of interest in moderate to robust populations.

Evaluation for each of these lines of evidence is discussed in the following sections.

5.1 TRENDS IN COI CONCENTRATIONS AND PLUME STABILITY

To assess the primary lines of evidence of MNA, URS reviewed existing analytical data for COI from the ten monitoring wells located along the axis of the BSA and CPA plumes. This review included: 1) plotting the change in concentration distribution of the plumes (in plan view) over time under similar water level and potentiometric conditions; and 2) assessing the suitability of performing a statistical analysis of the COI analytical data using the Mann-Kendall Statistic to evaluate trends in the COI concentrations over time under similar water level and potentiometric conditions. Concentrations of COI and selected electron acceptors, along with water levels observed in individual wells, were plotted chronologically by monitoring event to determine if there was a seasonal correlation between concentration and water levels.

Based upon a comparison of potentiometric surface contour maps developed for monitoring events performed since 2006, potentiometric contours are affected by seasonal water level changes. Based upon similar groundwater elevations and distribution of equipotential contours, the following data sets were judged to be representative of "typical" potentiometric surfaces:

- For monitoring wells BSA-MW-1S through BSA-MW-4D and CPA-MW-1D through CPA-MW-4D, data from 3Q and 4Q 2008; and 1Q and 3Q 2009; and 1Q 2010.
- For monitoring wells BSA-MW-5 and CPA-MW-5, data from 2Q and 3Q 2008; 3Q 2009; and 1Q 2010.

5.1.1 Concentration Plots

The concentrations of benzene and CB were mapped and concentration contours were developed to evaluate the changes in the distribution of COI over time.

Benzene concentrations for 2Q06 and 1Q10 are shown in **Figures 4** and **5**, respectively; CB concentrations for 2Q06 and 1Q10 are shown in **Figures 6** and **7**, respectively. The concentrations from these monitoring events were selected because they were the two monitoring events furthest apart in time that had "typical" potentiometric surfaces. There were no significant concentration changes observed in the BSA and CPA Plumes between the source areas and the river over this time period, which indicates that the plumes are not expanding.

These maps also indicate that the benzene and CB concentrations in groundwater near the Mississippi River are consistent with the flowpaths indicated by the cross-sections through the BSA and CPA Plumes (see **Figures 2** and **3**). In particular, higher concentrations of benzene in wells near the river appear to be associated with benzene detected in groundwater in the plume stability well (PSMW-01) located upgradient of the BSA and CPA area.

Page 8 of 21 July 2010

In addition, plots for each well were developed to evaluate changes in the COI concentrations and potential oxidation and transformation products generated from the biodegradation of these COI (e.g., ferrous iron [Fe²⁺] and carbon dioxide and methane, respectively) over time. The level of the groundwater table in each monitoring well is also shown on these plots. These plots were reviewed to assess if the COI were attenuating, in which case one would expect to see concentrations of COI decrease, and concentrations of potential transformation products from biodegradation increase, over time. Plots of the data for each quarterly monitoring round from 3Q08 through 2Q10, together with the supporting information, are presented in **Attachment A**. Review of the data indicates that there is generally no change in the COI concentrations over time, but does indicate that the concentrations are seasonally affected, as discussed below.

5.1.2 Mann-Kendall Analysis

The work plan states that the non-parametric Mann-Kendall Test, combined with the coefficient of variation (CV) test, will be used to evaluate the significance of trends of COI in groundwater at the Site. The Mann-Kendall Test is considered to be appropriate for evaluating trends in the data for the following reasons:

- This test is designed to handle data that are non-parametric (i.e., do not exhibit a specific distribution such as normal or log normal);
- Data set can contain data collected at irregularly spaced intervals in time; and
- Data set can contain elevated (outlier) values compared to the average or non-detect results.

The Mann-Kendall Test was performed using the spreadsheet provided by the State of Wisconsin Department of Natural Resources Remediation and Redevelopment Program (WIDNR Form 4400-215, dated February 2001). The WIDNR spreadsheet evaluates trends in data over time at the 80% and 90% confidence levels. If no trend exists at the 80% confidence level, the spreadsheet will evaluate the stability of the data. The WIDNR spreadsheet was revised by URS to also evaluate trends at the 95 % confidence level.

Performing the Mann-Kendall Test with the WIDNR spreadsheet will provide one of several different trend and stability results for a given data set. These results, as well as what they mean, are as follows:

1. Trend Results:

- Increasing a sufficient number of data points are greater than the previous data points, so
 the Mann-Kendall Statistic (S) is greater than the absolute value of the critical Mann-Kendall
 Statistic (S_{cr}) for the given confidence level.
- Decreasing a sufficient number of data points are less than the previous data points, so
 the Mann-Kendall Statistic (S) is less than the critical Mann-Kendall Statistic (S_{cr}) for the
 given confidence level.
- No Trend does not meet the criteria for increasing or decreasing trends.

 n<4 – an insufficient number of data points that are considered to be valid to perform the Mann-Kendall Test (i.e., less than 4 valid data points), so data could not be analyzed.

2. Stability Results:

- Stable A trend could not be determined at the 80% confidence level and the covariance is less than 1.0.
- Non-Stable A trend could not be determined at the 80% confidence level and the covariance is greater than or equal to 1.0.
- NA Not Analyzed; stability could not be determined at the 80% confidence level because the Mann-Kendall Statistic (S) was greater than the number of events in the analysis.
- n<4 an insufficient number of data points that are considered to be valid to perform the Mann-Kendall Test (i.e., less than 4 valid data points), so data could not be analyzed.

The Mann-Kendall Test is not valid for unadiusted data that exhibits seasonal behavior (i.e., data that is not seasonally consistent). Seasonal behavior of the MNA data (i.e., from 3Q08 through 2Q10) from wells in the BSA and CPA Plumes were evaluated in two ways. First, as noted above, the potentiometric contours of the DHU are affected by seasonal water level changes, which are expected to result in seasonal variations in the COI concentrations. Second, COI concentrations and groundwater levels measured during each sampling event were plotted versus time. For the BSA and CPA Plume monitoring wells, concentrations of COI and groundwater elevations exhibited generally parallel trends, as shown in the plots in Attachment A, which is consistent with the concentrations being seasonally affected. From the review of these plots and the potentiometric contours, the data obtained during 3Q08, 4Q08, 1Q09, 3Q09, and 1Q10 appeared to be seasonally consistent at monitoring wells BSA-MW-1S through BSA-MW-4D and CPA-MW-1D through CPA-MW-4D. For monitoring wells BSA-MW-5D and CPA-MW-5D, the data from 3Q08, 4Q08, 3Q09, and 1Q10 are considered to be seasonally consistent. The 2Q09, 4Q09 and 2Q10 data (as well as the 1Q09 data for monitoring wells BSA-MW-5D and CPA-MW-5D) was obtained during very high river stages and do not appear to be seasonally consistent with the other data obtained during the two years of monitoring. Therefore, seasonally valid data were considered to be provided by four or five monitoring events, which were then used for the Mann-Kendall Test analysis.

The results of the trend analyses for the COI in each monitoring well are summarized below in **Table 3** and supporting information is presented in **Attachment B**.

Page 10 of 21 July 2010

Table	Table 3: Summary of Results of Mann-Kendall Trend Test and Stability Analysis							
	Benz	zene	Monochlo	robenzene	Total Dichlorobenzene			
Monitoring Well	Trend ≥ 90% Confidence Level	Stability	Trend ≥ 90% Confidence Level	Stability	Trend ≥ 90% Confidence Level	Stability		
BSA-MW-1S	No Trend	NA	n<4	n<4	n<4	n<4		
BSA-MW-2D	No Trend	NON-STABLE	No Trend	NA	n<4	n<4		
BSA-MW-3D	No Trend	STABLE	DECREASING	NA	DECREASING	NA		
BSA-MW-4D	No Trend	NON-STABLE	No Trend	STABLE	No Trend	STABLE		
BSA-MW-5D	No Trend	NA	INCREASING	NA	No Trend	NA		
CPA-MW-1D	INCREASING	NA	INCREASING	NA	No Trend	STABLE		
CPA-MW-2D	No Trend	NA	DECREASING	NA	No Trend	NA		
CPA-MW-3D	No Trend	NA	INCREASING	NA	No Trend	NA		
CPA-MW-4D	No Trend	NON-STABLE	No Trend	STABLE	No Trend	NA		
CPA-MW-5D	n<4	n<4	INCREASING	NA	INCREASING	NA		
	1,2-Dichlo	robenzene	1,3-Dichlorobenzene		1,4-Dichlorobenzene			
Monitoring Well	Trend ≥ 90% Confidence Level	Stability	Trend ≥ 90% Confidence Level	Stability	Trend ≥ 90% Confidence Level	Stability		
BSA-MW-1S	· n<4	n<4	n<4	n<4	n<4	n<4		
BSA-MW-2D	n<4	n<4	n<4	n<4	n<4	n<4		
BSA-MW-3D	INCREASING	NA	DECREASING	NA	INCREASING	NA		
BSA-MW-4D	No Trend	STABLE	n<4	n<4	No Trend	STABLE		
BSA-MW-5D	No Trend	NA	n<4	n<4	No Trend	NA		
CPA-MW-1D	No Trend	STABLE	No Trend	STABLE	No Trend	STABLE		
CPA-MW-2D	No Trend	STABLE	No Trend	STABLE	No Trend	NA		
CPA-MW-3D	No Trend	STABLE	No Trend	STABLE	INCREASING	NA		
CPA-MW-4D	No Trend	STABLE	n<4	n<4	No Trend	NA		
CPA-MW-5D	No Trend.	NA	n<4	n<4	INCREASING	NA		

Note: n<4 - insufficient valid data for analysis because all (or all but one) of the analytical results used in the analysis were below detection limits (i.e., non-detect).

The Mann-Kendall Test indicated the following:

- Benzene concentrations generally exhibited no trend at the 90% confidence level and stability was generally non-stable or not analyzed (NA).
- In the nine monitoring wells where CB was detected, concentrations were increasing at four locations; decreasing at two locations; and exhibited no trend at the 90% confidence level at three locations. The concentrations were stable at two locations where no trend was exhibited, and not analyzed (NA) at the other locations where CB was detected.

- In the eight monitoring wells where DCB was detected, total DCB concentrations were increasing
 at one location; decreasing at one location; and exhibited no trend at the 90% confidence level at
 the other locations. The concentrations were stable at two locations and not analyzed (NA) at
 the other locations.
- In the eight monitoring wells where 1,2-DCB was detected, concentrations were increasing at one location and exhibited no trend at the 90% confidence level at the other locations. The concentrations were stable at five locations and not analyzed (NA) at the other three locations with detectable concentrations of 1,2-DCB.
- Six of the ten monitoring wells did not have 1,3-DCB concentrations in all, or all but one, of the sampling events evaluated. In the four monitoring wells where 1,3-DCB was detected, concentrations were decreasing at one location and exhibited no trend at the 90% confidence level at the other three locations. The concentrations were stable at the three locations where 1,3-DCB concentrations exhibited no trend at the 90% confidence level.
- In the eight monitoring wells where 1,4-DCB was detected, concentrations were increasing at three locations and exhibited no trend at the 90% confidence level at the other locations. The concentrations were stable at two locations and not analyzed (NA) at the other three locations with detectable concentrations of 1,4-DCB.

5.1.3 Compound-Specific Isotope Analyses

As noted above, a primary line of evidence of MNA includes CSIA which can indicate a reduction in the concentration of an isotopically marked electron donor and enrichment of the isotopic fraction of a specific isotope in biomass. In accordance with the LTMP Work Plan, Bio-trap® samplers from Microbial Insights were installed in BSA-MW-2D and in CPA-MW-3D. These samplers were baited with a specially synthesized form of the COI (i.e., benzene and CB) containing carbon 13 isotopes (13C). Since the 13C isotopes are rare, the labeled compound can be readily differentiated from the COI present at the Site. As Microbial Insights notes: "following deployment, the Bio-trap® is recovered and three approaches are used to conclusively demonstrate biodegradation of the contaminant of concern:

- The loss of the labeled compound provides an estimate of the degradation rate (% loss of 13C).
- Quantification of 13C-enriched phospholipid fatty acids (PLFA) indicates incorporation into microbial biomass.
- Quantification of 13C-enriched dissolved inorganic carbon (DIC) indicates contaminant mineralization."

Bio-trap® samplers baited with 13C-labeled benzene (BSA-MW-2D) or 13C chlorobenzene (CPA-MW-3D) were deployed in monitoring wells during each quarterly monitoring event for approximately 30 days and then recovered for analysis. Microbial Insights summarized the results of these analyses as follows:

 Moderate levels (approximately 1x10⁵ cells/bead) of total biomass were detected in both the benzene (BSA-MW-2D) and CB (CPA-MW-3) baited Bio-trap[®] samplers. These populations are

Page 12 of 21 July 2010

considered to be indicative of moderate biomass and represent viable populations of microorganisms for biodegradation.

- Quantification of the 13C-enriched biomass demonstrated a high level of utilization of benzene
 by the indigenous microbes in well BSA-MW-2D which conclusively indicates the occurrence of
 biodegradation of benzene by indigenous microorganisms. The biomass only incorporated 13C
 in the CB baited Bio-trap® samplers in well CPA-MW-3D during 1Q09 and 1Q10; during the other
 quarters 13C was not incorporated into the biomass in the CB baited Bio-trap® samplers.
- Quantification of 13C dissolved inorganic carbon (DIC) demonstrated high levels of benzene
 mineralization in well BSA-MW-2D. Mineralization of CB was identified in CPA-MW-3D.
 Although 13C was not detected in biomass in the Biotrap that was baited with CB during five of
 the eight monitoring events, the mineralization of CB indicates that the CB is being biodegraded
 and respired by microorganisms as carbon dioxide. This is consistent with the concentrations of
 carbon dioxide detected in wells in downgradient parts of the plumes as discussed later in this
 memorandum.
- Comparison of pre- and post-deployment 13C labeled benzene in well BSA-MW-2D showed minimal loss of the 13C labeled benzene. Losses of the 13C labeled CB ranged from 34 to 63 percent in CPA-MW-3D.

From these findings, it can be concluded that benzene and CB are being degraded by microorganisms that are present in the BSA and CPA Plumes.

5.2 Trends in Transformation Products and Electron Acceptors

To evaluate the secondary lines of evidence of MNA, plots of concentration versus distance were developed for the COI (e.g., benzene, CB, and total DCB isomers), specific electron acceptor (e.g., sulfate), and potential oxidation and transformation products generated from the biodegradation of these COI (e.g., ferrous iron [Fe²⁺] and carbon dioxide and methane, respectively). These plots were reviewed to assess if the COI were attenuating, in which case one would expect to see concentrations of COI and electron acceptors decrease and concentrations of potential transformation products from biodegradation to increase with distance along a flow path within the plume. Plots for each quarterly monitoring round from 3Q08 through 2Q10 are presented in **Figures 8** and **9** and are discussed below.

5.2.1 Change in Concentration of COI with Distance

For the BSA and CPA Plumes, plots were developed to show changes in concentration of COI, electron acceptors, and transformation products versus distance for monitoring wells that were considered to be along the flowpaths that originated at the BSA and CPA source areas, respectively. From cross-sections showing the vertical equipotential isopleths along the CPA Plume (**Figure 2**), the monitoring wells in the CPA Plume located along a flowpath were CPA-MW-1D through CPA-MW-4D. From cross-sections showing the vertical equipotential isopleths along the BSA Plume (**Figure 3**), the monitoring wells in the BSA Plume located along a flowpath were BSA-MW-1S and BSA-MW-2D.

In addition, the Excel "Trend Line" function was used to determine the exponential decay function (i.e., $y = be^{-mx}$) for the COI data on the plots for 3Q and 4Q 2008; 1Q, 2Q, 3Q and 4Q 2009; and 1Q and 2Q 2010. The m value in the exponential decay function is the COI concentration reduction rate in units of

Page 13 of 21 July 2010

length⁻¹. The reduction rate (i.e. bulk attenuation rate) incorporates all mechanisms that reduce the COI (e.g., advection, sorption, degradation); the degradation rate (k, in units of time⁻¹) is the reduction rate divided by the COI velocity (v_c) through the soil. The typical soil data presented in **Table 1** were used to determine the transport velocity of the COI through the soil (v_c in length per time), and then to calculate the degradation rate. The average reduction rates, COI velocities, and degradation rates for each COI are summarized below in **Table 4**, and supporting information is presented in **Attachment C**.

The estimated degradation rates for benzene in the BSA and CPA Plumes are within the range of typical values for anaerobic degradation of benzene presented by Newell et al (2002). However, the estimated degradation rates for CB and the DCB isomers in the CPA Plume appear to be lower than indicated in the literature (WHO, 2004).

Table 4: Average COI Reduction and Degradation Rates							
Constituent of Interest	Reduction Rate (centimeter-1)	COI Velocity (centimeter/second)	Degradation Rate (days ⁻¹)				
BSA Plume			•				
Benzene	0.00009	0.00006	0.00052				
CPA Plume							
Benzene	0.00004	0.00006	0.00023				
СВ	0.00004	0.00003	0.00008				
1,2-DCB	0.00007	0.00002	0.00012				
1,3-DCB	0.00006	0.00002	0.00011				
1,4-DCB	0.00008	0.00002	0.00014				

5.2.2 Change in Concentration of Electron Acceptors and By-Products with Distance

Plots showing the changes in concentrations of sulfate, ferrous iron, carbon dioxide and methane with distance were also developed for monitoring wells that were considered to be along the BSA and CPA Plume flowpaths using the same monitoring wells as above. These plots were developed to provide data that may indicate specific electron acceptors being utilized to degrade the COI and to identify the geochemical reaction(s) that define the degradation pathway(s). These plots are included in **Figures 8** and **9**, and supporting information is presented in **Attachment C**.

Changes in concentrations of sulfate, ferrous iron, carbon dioxide and methane with distance that appeared to be occurring at the Site and downgradient of the Site are summarized in **Table 5** and briefly discussed below.

Table 5 Change in Concentration of Electron Acceptors and By-Products with Distance						
Electron Acceptors or By-Products	Change with Distance	Change with Time	Supports Finding of Natural Attenuation			
BSA Plume						
Sulfate (SO ₄ ²⁻)	No change	Decrease	Yes			
Ferric Iron (Fe 3+)	No change	Decrease	Inconclusive			
Ferrous Iron (Fe 2+)	No change	No change	Inconclusive			
Carbon Dioxide (CO ₂)	Elevated, slight increase	Increase	Yes			
Methane (CH ₄)	Elevated, typically no change with distance	Increase in 2009	Yes			
Oxidation-Reduction Potential (ORP)	No change or slight decrease	Decrease	In range for sulfate reduction and/or methanogensis			
CPA Plume						
Sulfate (SO ₄ ²⁻)	Slight decrease, occasional increase nearer river	Decrease	Yes			
Ferric Iron (Fe 3+)	Variable, but at low concentrations	Increase	Inconclusive			
Ferrous Iron (Fe 2+)	Increase	No change	Yes			
Carbon Dioxide (CO ₂)	Increase	No change	Yes			
Methane (CH₄)	Elevated, increase with distance	No change	Yes			
Oxidation-Reduction Potential (ORP)	Decrease	Decrease	In range for sulfate reduction and/or methanogensis			

BSA Plume

- 1. Carbon dioxide is present at concentrations generally on the order of 25 to 60 mg/l and the CO₂ concentrations generally increase over time. These trends provide secondary evidence of biodegradation of COI in the BSA plume.
- Methane concentrations appear to be elevated and increasing over time indicating that electron
 acceptors (i.e., dissolved oxygen, nitrate, manganese, ferric iron, and sulfate) are being utilized.
 Specifically, the presence of methane indicates that reactions responsible for biodegradation
 are sulfate reduction/methanogenesis.
- 3. Methane concentrations appear to be elevated and increasing with distance, indicating that electron acceptors (i.e., nitrate, manganese, ferric iron [Fe³⁺], and sulfate) are being utilized.
- 4. The ORP is generally negative, which indicates anaerobic conditions exist within groundwater, consistent with the presence of elevated concentrations of organic compounds that exert a high

Page 15 of 21 July 2010

chemical oxygen demand. The ORP is generally in the range where the dominant reactions are sulfate reduction and methanogensis.

CPA Plume

- Carbon dioxide concentrations appear to generally increase with distance from the source. As
 indicated in Section 4.0, carbon dioxide is produced during the utilization of electron acceptors
 (i.e., dissolved oxygen, nitrate, manganese, ferric iron, and sulfate). These trends provide
 secondary evidence of biodegradation of COI in the CPA plume.
- Methane concentrations appear to be elevated and increasing with distance indicating that
 electron acceptors (i.e., dissolved oxygen, nitrate, manganese, ferric iron, and sulfate) are being
 utilized. Specifically, the presence of methane indicates that reactions responsible for
 biodegradation are sulfate reduction/methanogenesis.
- 3. The ORP is generally negative, which indicates anaerobic conditions exist within groundwater, consistent with the presence of elevated concentrations of organic compounds that exert a high chemical oxygen demand. The ORP is generally in the range where the dominant reactions are sulfate reduction and methanogensis.

5.3 Presence of Specific Types of Bacteria

Tertiary lines of evidence include the presence of certain types of bacteria in the aquifer that are capable of degrading constituents of interest in moderate to robust populations. Microbial Insights used an analysis of the phospholipid fatty acids (PLFA) to estimate the amount of bacteria present in the groundwater in the BSA and CPA Plumes, because "PLFA are a primary component of the membrane of all living cells including bacteria. PLFA decomposes rapidly upon cell death, so the total amount of PLFA present in a sample is indicative of the viable biomass" (Microbial Insights, 2010).

Additionally, analysis of the PLFA allows identifying the relative percentage of different bacteria present. As they noted "some organisms produce 'signature' types of PLFA allowing quantification of important microbial functional groups (e.g. iron reducers, sulfate reducers, or fermenters). The relative proportions of the groups of PLFA provide a 'fingerprint' of the microbial community. In addition, Proteobacteria modify specific PLFA during periods of slow growth or in response to environmental stress providing an index of their health and metabolic activity" (Microbial Insights, 2010).

In 3Q and 4Q 2008; 1Q, 2Q, 3Q and 4Q 2009; and 1Q and 2Q 2010, the results of the biological analysis indicated that a moderate biomass (i.e., 1x10⁵ to 1x10⁶ cells) was present in the BSA and CPA Plumes. The dominant bacteria in the BSA and CPA Plumes were Proteobacteria (Monos), which were typically one half to three-quarters or more of the bacteria present. The next most prevalent bacteria were General (Nsats), which were typically 20% to 25% of the bacteria present. The Branched Monoenoic (BrMonos) and Mid-Chain Branched Saturated (MidBrSats) accounted for approximately 0 to 5% of the total biomass.

The following descriptions of these types of bacteria from the Microbial Insights 2010 data report are summarized in **Table 6**.

Table 6: Descriptions of Bacteria Identified at the Site					
PLFA Structural Group	General classification	Potential Relevance to MNA			
Monoenoic (Monos)	Abundant in Proteobacteria (Gram negative bacteria), typically fast growing, utilize many carbon sources, and adapt quickly to a variety of environments.	Proteobacteria is one of the largest groups of bacteria and represents a wide variety of both aerobes and anaerobes. The majority of hydrocarbon (e.g., benzene) utilizing bacteria fall within the Proteobacteria.			
Branched Monoenoic (BrMonos)	Found in the cell membranes of micro-aerophiles and anaerobes, such as sulfate- or iron-reducing bacteria.	High proportions are often associated with anaerobic sulfate and iron reducing bacteria.			
Mid-Chain Branched Saturated (MidBrSats)	Common in sulfate reducing bacteria and also Actinobacteria (High G+C Gram-positive bacteria).	High proportions are often associated with anaerobic sulfate and iron reducing bacteria.			
Normal Saturated (Nsats)	Found in all organisms.	High proportions often indicate less diverse populations.			

Given the prevalence of the Monos-type bacteria, it appears that there are bacteria present that can degrade the benzene and chlorobenzene under the anaerobic conditions found in the BSA and CPA Plumes. There may also be some anaerobic sulfate and iron reducing bacteria present (i.e., the BrMonos and MidBrSats).

6.0 CONCLUSIONS

Our evaluation of the data from the groundwater monitoring conducted from 3Q08 through 2Q10 indicates the following:

- 1. The concentrations of benzene in the BSA plume and benzene, CB, and DCB isomers in the CPA plume generally decrease with distance from the sources.
- 2. The data exhibit seasonal behavior, so the Mann-Kendall Test was performed using data determined to be seasonally consistent to determine statistical trends in the concentrations of the COI over time in the monitoring wells in the BSA or CPA Plumes. The valid monitoring events were 3Q and 4Q 2008; and 1Q and 3Q 2009; and 1Q 2010; the data from 2Q09, 4Q09 and 2Q10 were obtained during non-typical (i.e., seasonally inconsistent) groundwater conditions. In addition, data from 1Q09 was considered to be seasonally inconsistent in the analyses of data for monitoring wells BSA-MW-5 and CPA-MW-5.
- 3. Based upon CSIA performed using Bio-trap® samplers baited with 13C-labeled benzene and CB, microorganisms are present in groundwater and saturated soils that are actively biodegrading these compounds.
- 4. In the BSA Plume, the degradation rate for benzene is 0.00052/day. In the CPA Plume, the degradation rate for benzene is 0.00023/day; the degradation rate for CB is 0.00008/day. Degradation rates for DCB isomers in the CPA Plume were in the range of 0.00011 to 0.00014.

Page 17 of 21 July 2010

The degradation rates for benzene are within the typical published ranges; the degradation rate for CB appears to be at the low end of the expected range.

5. The BSA and CPA Plumes appear to have sulfate reducing/methanogenic conditions. Specifically, sulfate concentrations appear to generally remain stable or decrease with distance and decrease over time in both plumes. Carbon dioxide and methane concentrations appear to be elevated and generally remain stable or increase with distance from the source and/or during the monitoring period.

7.0 RECOMMENDATIONS

Supported by data collected during this evaluation, listed below are recommendations for changes to the Long-Term Groundwater Monitoring Program:

- Reduce sampling frequency to semi-annual, with sampling events occurring during the first and third quarters of each year, as groundwater levels during those quarters tend to be seasonally consistent. This recommendation is consistent with US EPA's January 2007 "Technology Selection Report – Solutia Inc. W. G. Krummrich Facility, Sauget, Illinois."
- Eliminate SVOC analytes (specifically 4-chloroaniline, 2-chlorophenol, 1,4-dioxane, and 1,2,4-trichlorobenzene) from laboratory analysis in samples collected from the five Benzene Storage Area (BSA) monitoring wells. The SVOC compounds have been detected infrequently and, when detected, the concentrations were near the detection limits.
- Discontinue phospholipid fatty acids (PLFA) analyses and compound-specific isotope analyses (stable isotope probing [SIP]) because eight quarters of such testing have shown relatively consistent results that are sufficient to provide direct evidence of the occurrence of biodegradation processes.

Page 18 of 21

REFERENCES

ATSDR (2007) *Toxicological Profile for Benzene*, U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, August 2007.

ATSDR (2007) *ToxFAQs Benzene CAS #71-43-2*, U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, August 2007.

ATSDR (1990) Toxicological Profile for Chlorobenzene, U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, December 1990.

ATSDR (1999) *ToxFAQs Chlorobenzene CAS #108-90-7*, U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, July 1999.

ATSDR (2006) *Toxicological Profile for Chlorobenzene*, U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, August 2006.

ATSDR (1999) ToxFAQs Dichlorobenzenes 1,2-Dichlorobenzene CAS# 95-50-1, 1,3-Dichlorobenzene CAS# 541-73-1, 1,4-Dichlorobenzene CAS# 106-46-7, U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, August 2006.

Env. Tech. (1997) 1997 Resource Guide, Environmental Technology, page 90.

Lawrence, S.J. (2006) Description, Properties, and Degradation of Selected Volatile Organic Compounds Detected in Ground Water — A Review of Selected Literature, U.S. Department of the Interior, U.S. Geological Survey, Open-File Report 2006–1338.

MI (2010) Microbial Insights Data Package, Appendix E in 2nd Quarter 2009 Data Report, Long-Term Monitoring Program, Solutia Inc. W.G. Krummrich Facility, prepared by URS Corporation, July 2010.

Charles J. Newell, Hanadi S. Rifai, John T. Wilson, John A. Connor, Julia A. Aziz, and Monica P. Suarez (2002) "Calculation and Use of First-Order Rate Constants for Monitored Natural Attenuation Studies," United States Environmental Protection Agency National Risk Management Research Laboratory, Groundwater Issue, EPA/540/S-02/500, November 2002.

URS (2008) Sauget Area 2, Remedial Investigation Report, prepared by URS Corporation, October 2008.

URS (2008) 3rd Quarter 2008 Data Report, Long-Term Monitoring Program, Solutia Inc. W.G. Krummrich Facility, prepared by URS Corporation, December 2008.

URS (2009) 4th Quarter 2008 Data Report, Long-Term Monitoring Program, Solutia Inc. W.G. Krummrich Facility, prepared by URS Corporation, March 2009.

URS (2009) 1st Quarter 2009 Data Report, Long-Term Monitoring Program, Solutia Inc. W.G. Krummrich Facility, prepared by URS Corporation, May 2009.

URS (2009) 2nd Quarter 2009 Data Report, Long-Term Monitoring Program, Solutia Inc. W.G. Krummrich Facility, prepared by URS Corporation, August 2009.

URS (2009) 3rd Quarter 2009 Data Report, Long-Term Monitoring Program, Solutia Inc. W.G. Krummrich Facility, prepared by URS Corporation, November 2009.

URS (2010) 4th Quarter 2009 Data Report, Long-Term Monitoring Program, Solutia Inc. W.G. Krummrich Facility, prepared by URS Corporation, February 2010.

URS (2010) 1st Quarter 2010 Data Report, Long-Term Monitoring Program, Solutia Inc. W.G. Krummrich Facility, prepared by URS Corporation, April 2010.

URS (2010) 2nd Quarter 2010 Data Report, Long-Term Monitoring Program, Solutia Inc. W.G. Krummrich Facility, prepared by URS Corporation, July 2010.

USEPA (1995) OPPT Chemical Fact Sheets, Chlorobenzene Fact Sheet: Support Document (CAS No. 108-90-7), Pollution Prevention and Toxics, United States Environmental Protection Agency, EPA 749-F-95-007a, January 1995.

USEPA (2009A) Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities – Unified Guidance, EPA 530-R-09-007, U.S. Environmental Protection Agency, Office of Resource Conservation and Recovery, Program Implementation Division, March 2009

USEPA (2009B) Technical Factsheet on: CHLOROBENZENE, fact sheet is part of a larger publication: *National Primary Drinking Water Regulations*, United States Environmental Protection Agency, Source: www.epa.gov/safewater/pdfs/factsheets/voc/tech/chlorobe.pdf

Wiedemeier, T.H., M. A. Swanson, D. E. Moutoux, E. K. Gordon, J. T. Wilson, B. H. Wilson, D. H. Kampbeli, P. E. Haas, R. N. Miller, J. E. Hansen, and F. H. Chapelle (1998) Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water, National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio, EPA Report # EPA/600/R-98/128.

Wiedemeier, T. H., J.T. Wilson, D.H. Kampbell, R.N. Miller, and J.E. Hansen (1999) Technical Protocol for Implementing Intrinsic Remediation With Long-Term Monitoring for Natural Attenuation of Fuel Contamination Dissolved in Groundwater, Volume I. Technical Report prepared for Air Force Center for Environmental Excellence, Technology Transfer Division. March 8, 1999.

WIDNR (2001) "Mann-Kendall Statistical Test" Form 4400-215, State of Wisconsin Department of Natural Resources Remediation and Redevelopment Program, February 2001.

WHO (2004) Chlorobenzene Other than Hexachlorobenzene: Environmental Aspects, H.M. Malcom, P.D. Howe, S. Dobson, Centre for Ecology and Hydrology, Monks Wood, UK, for the World Health Organization. Concise International Chemical Assessment Document 60, Source: <a href="https://www.inchem.org/documents/cicads/

ATTACHMENTS

FIGURES

Figure 1: Site Map

Figure 2: Cross-section A-A' Through CPA Plume

Figure 3: Cross-section B-B' Through BSA Plume

Figure 4: Benzene Concentration Map – 2nd Quarter 2006

Figure 5: Benzene Concentration Map- 1st Quarter 2010

Figure 6: Chlorobenzene Concentration Map – 2nd Quarter 2006

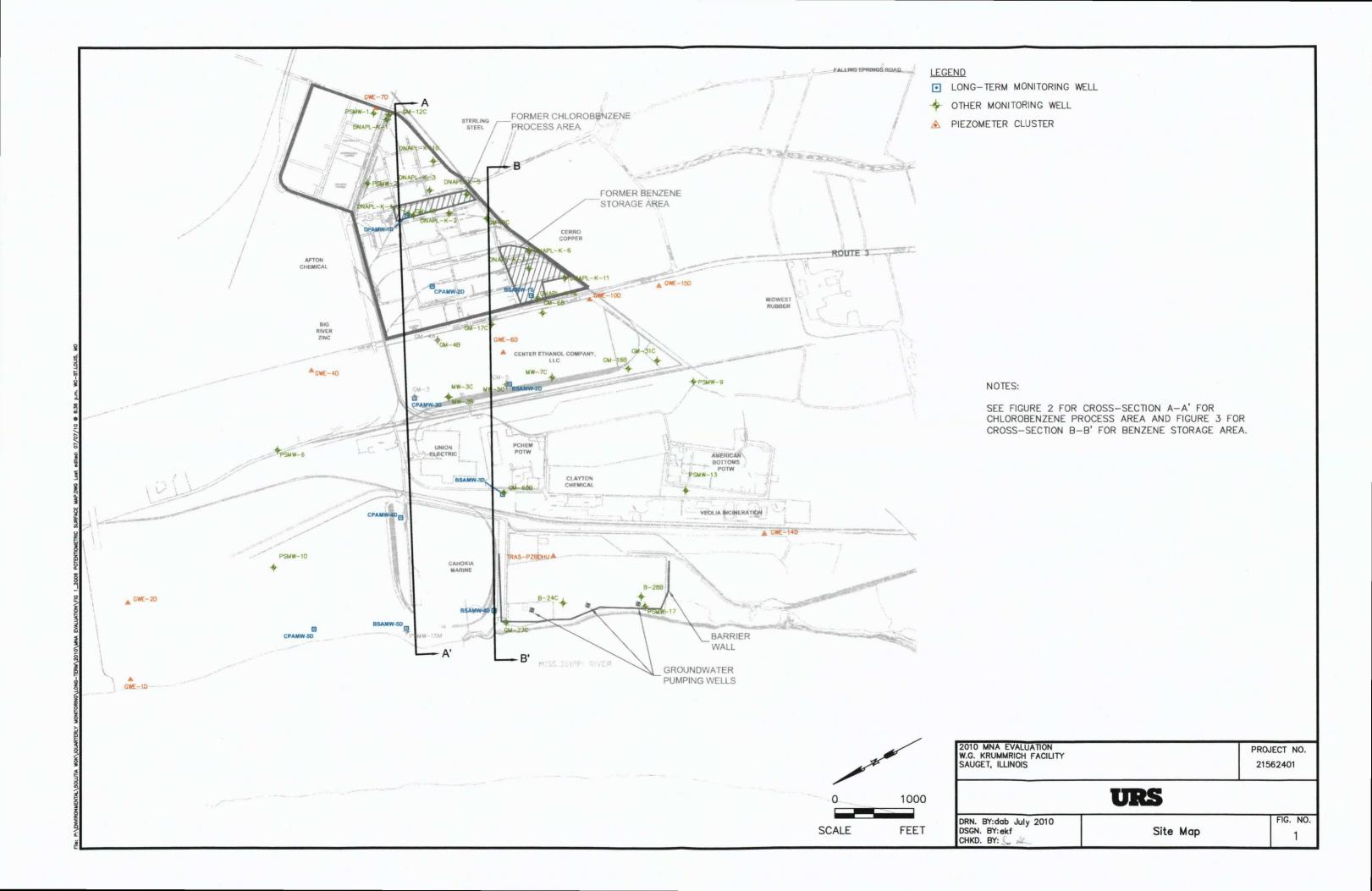
Figure 7: Chlorobenzene Concentration Map – 1st Quarter 2010

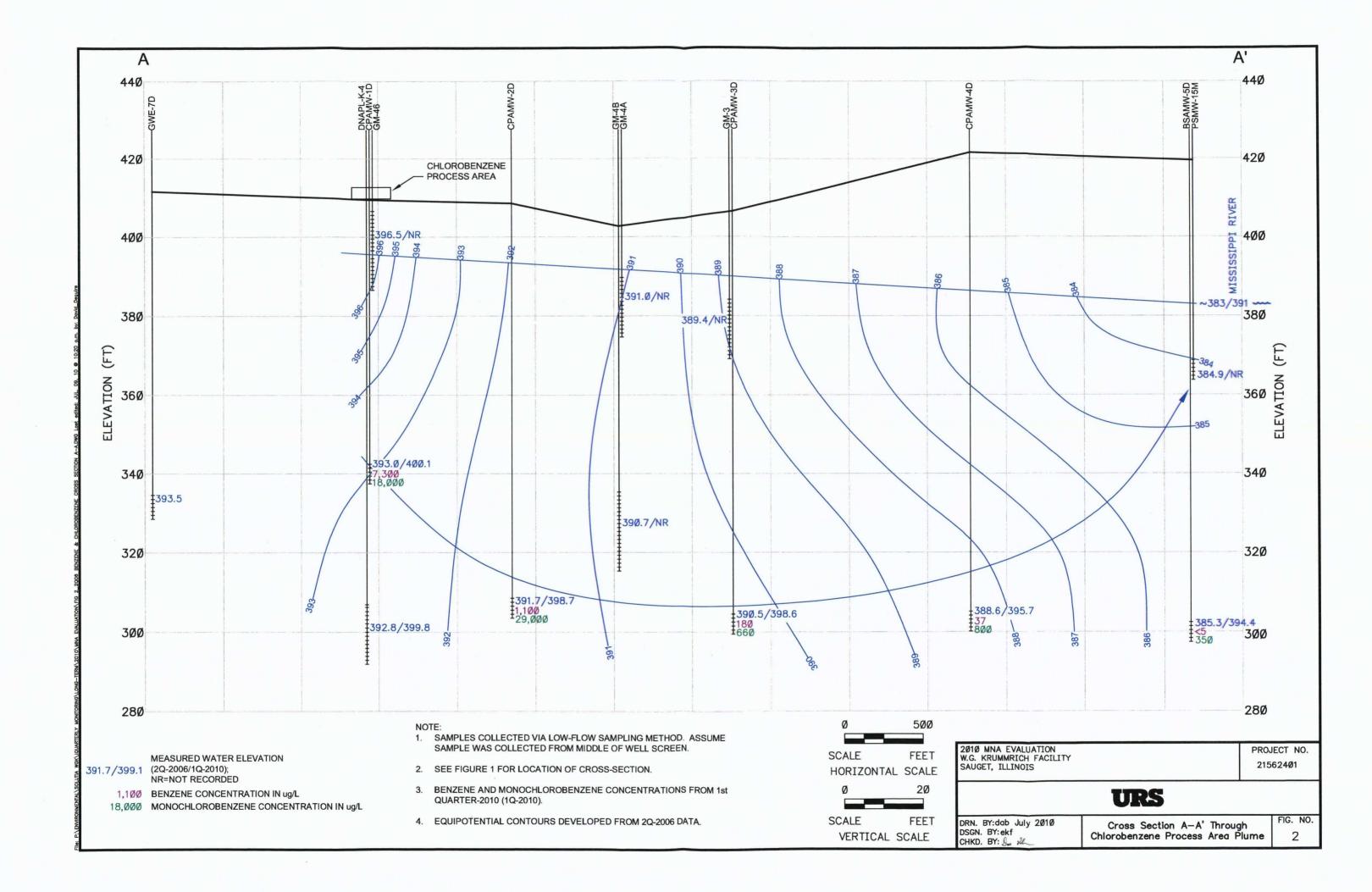
Figure 8: Benzene Storage Area (BSA) Plume - Trends with Distance

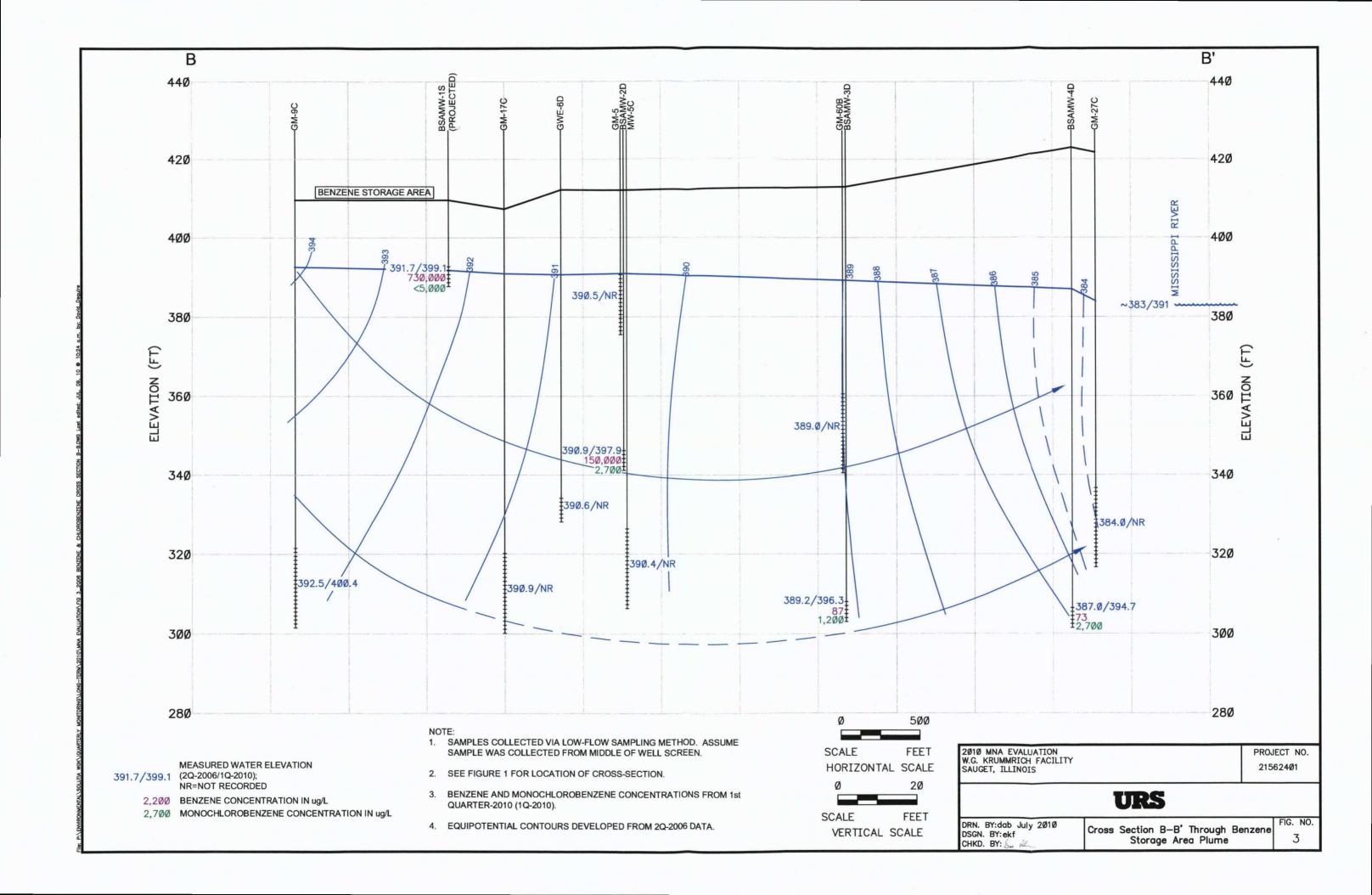
Figure 9: Chlorobenzene Process Area (CPA) Plume - Trends with Distance

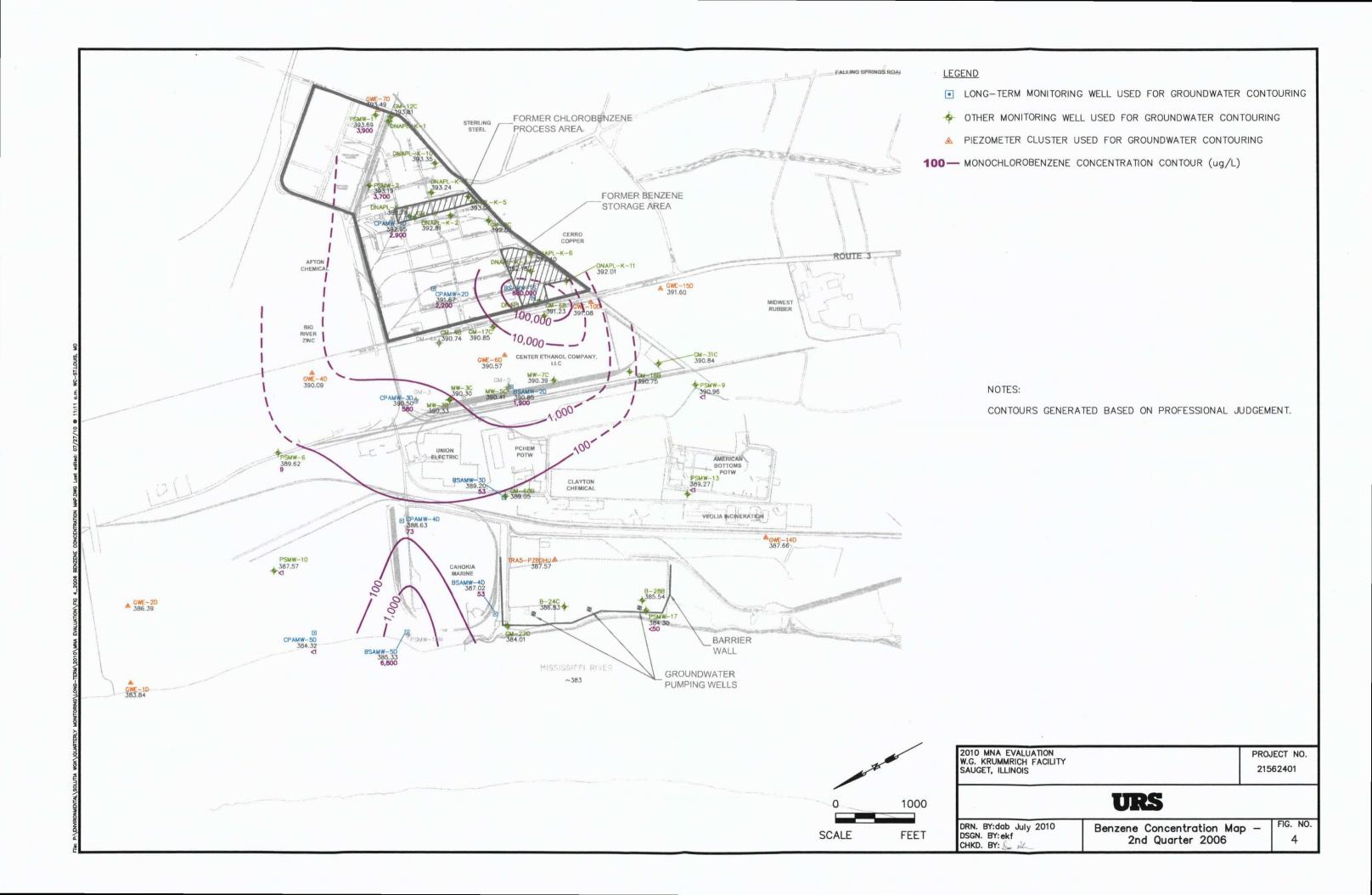
ATTACHMENT A

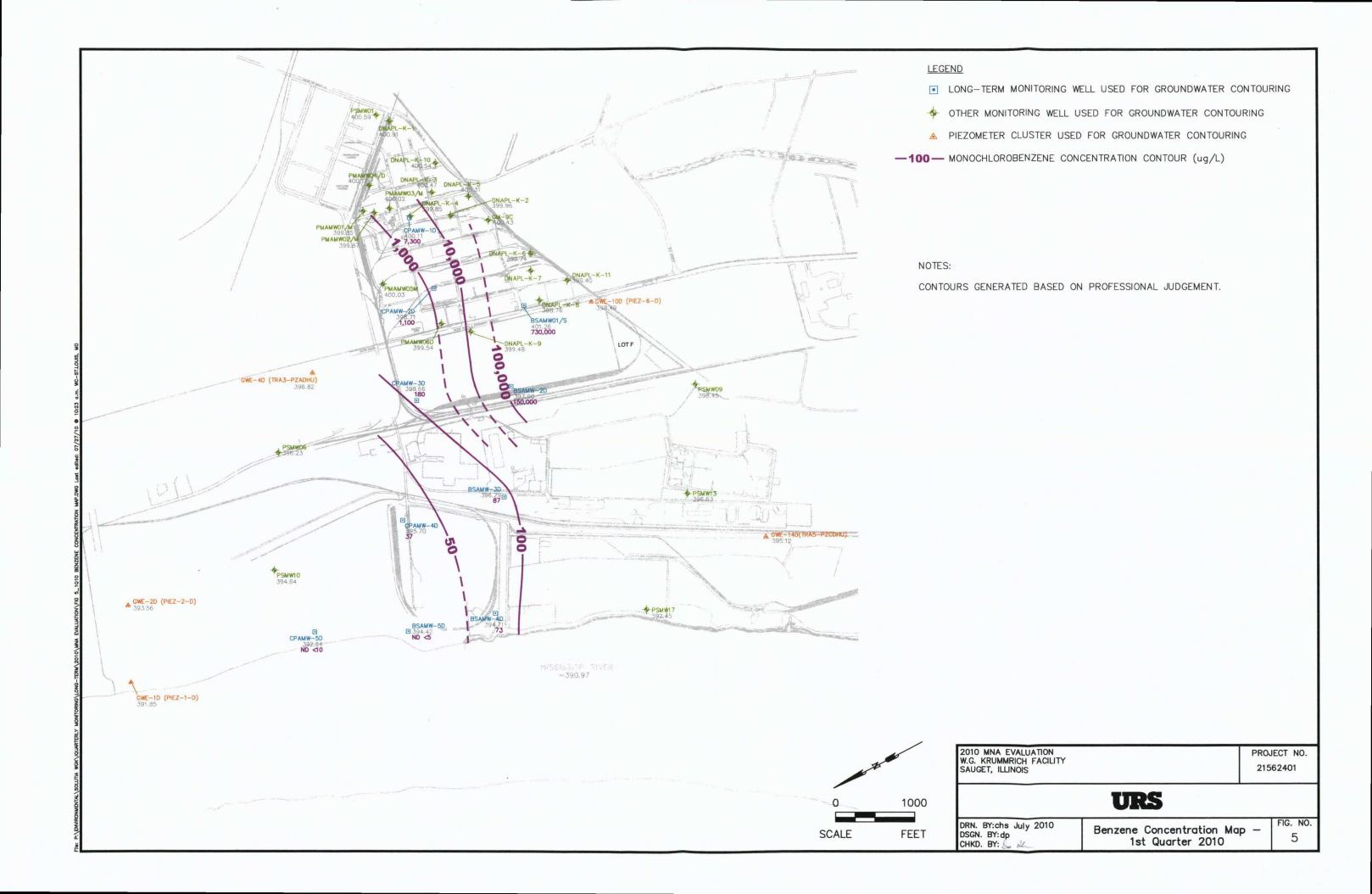
Supporting Data for MNA Evaluation 3Q08 through 2Q10

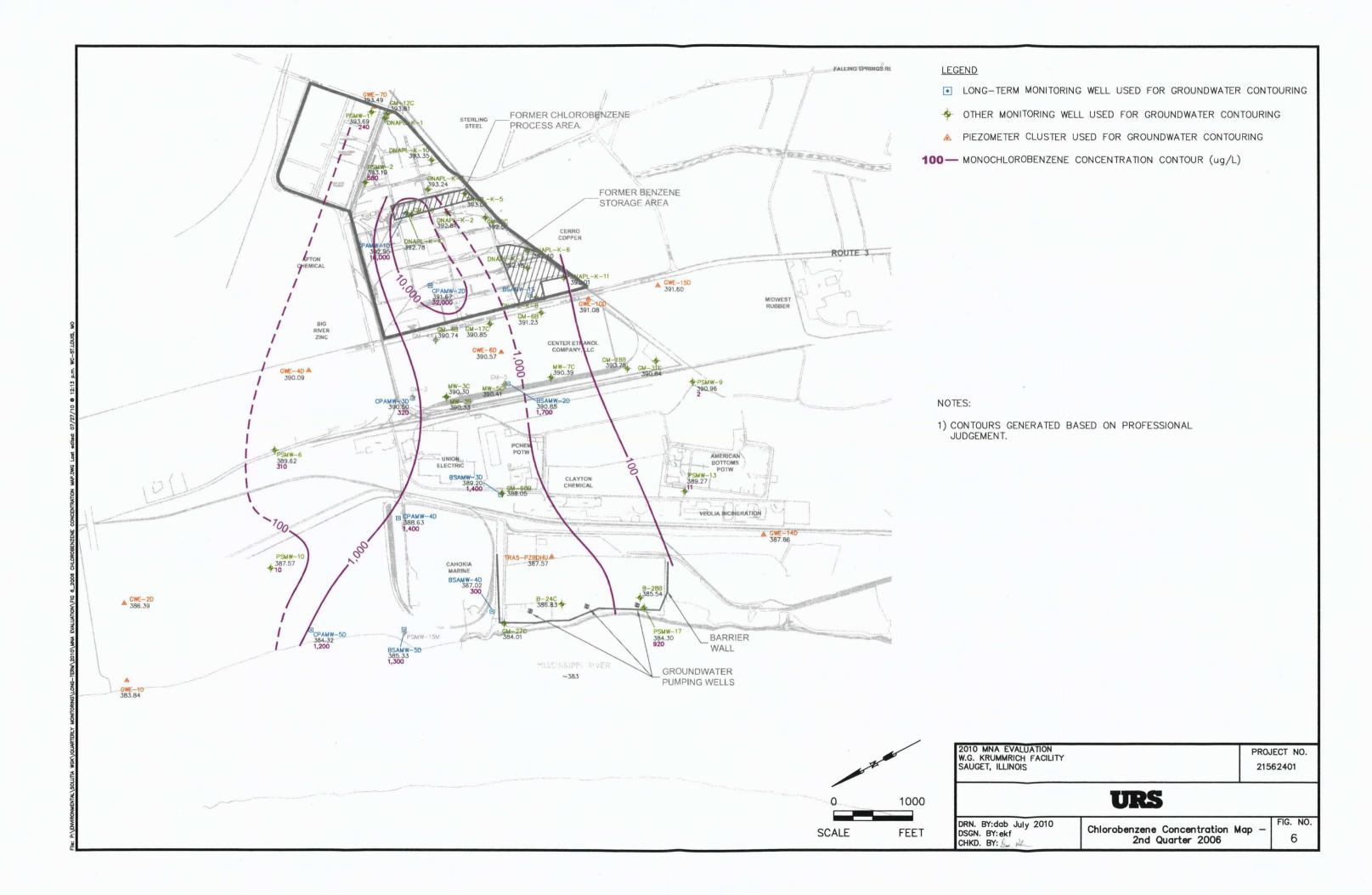

ATTACHMENT B

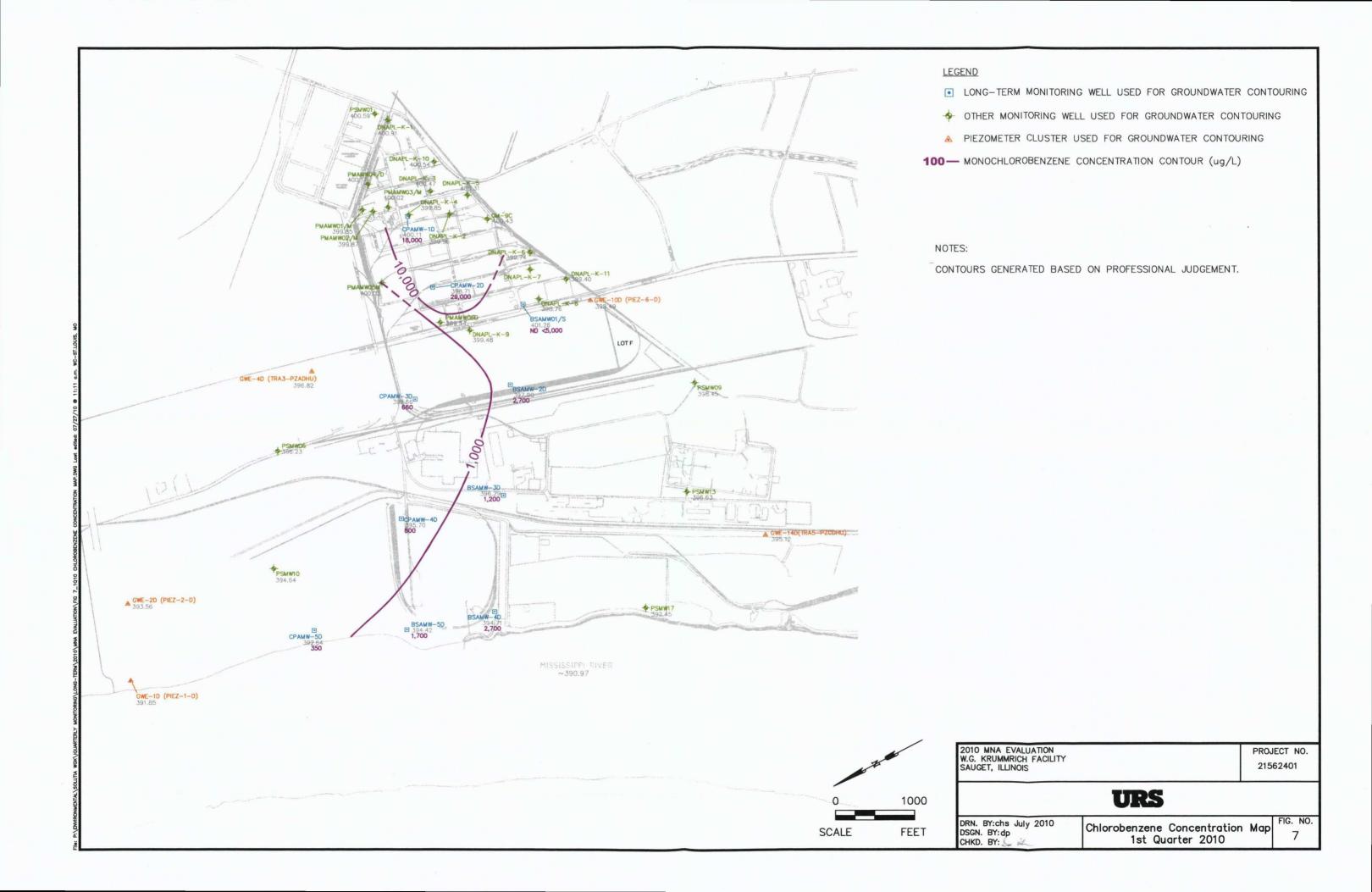

Mann-Kendall Analysis of MNA Data 3Q08 through 2Q10

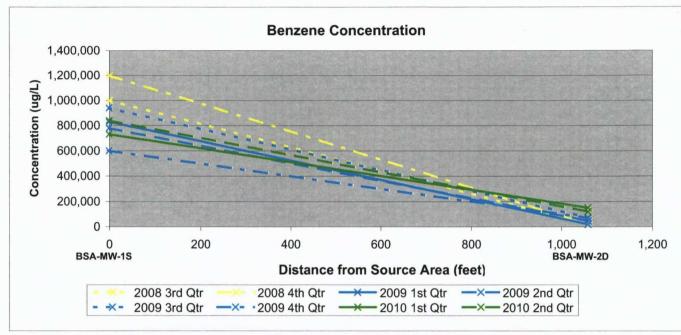

ATTACHMENT C

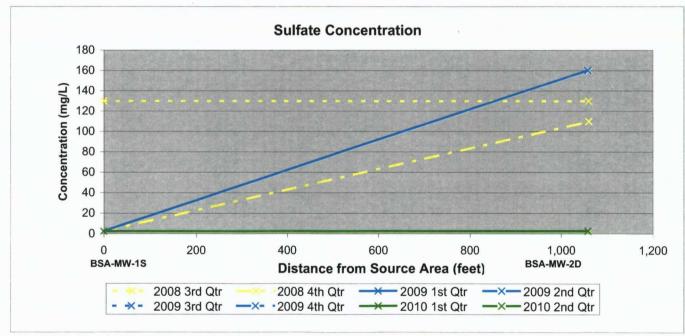

Evaluation of MNA Degradation 3Q08 through 2Q10

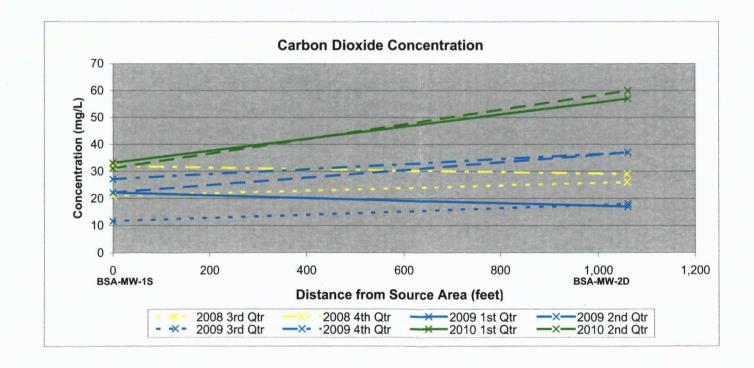

Figures



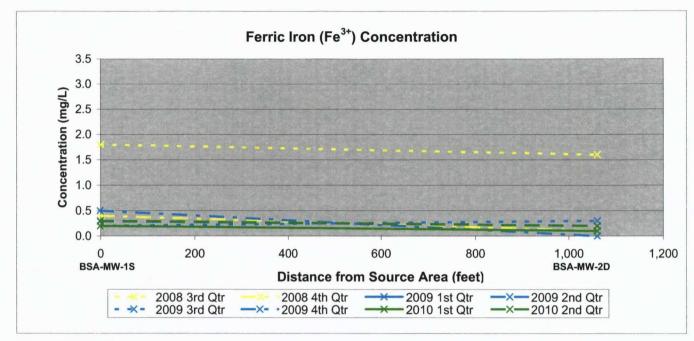


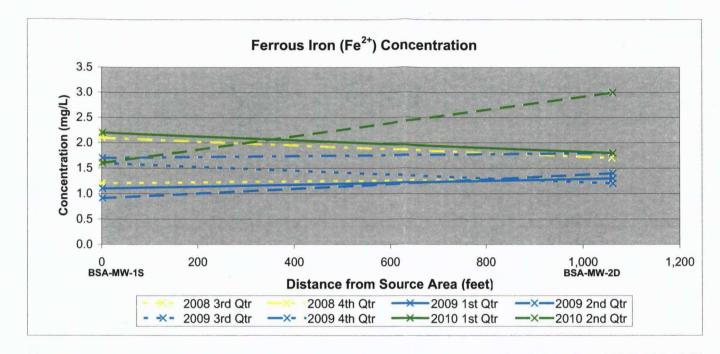


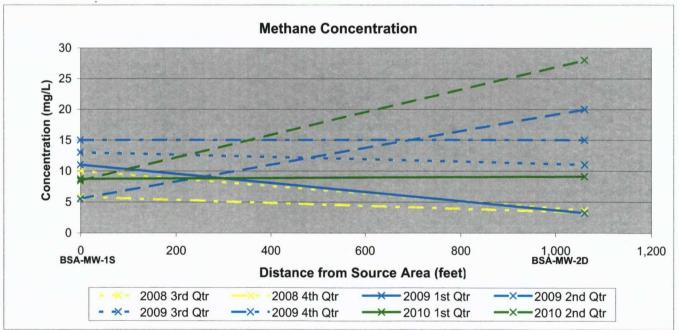


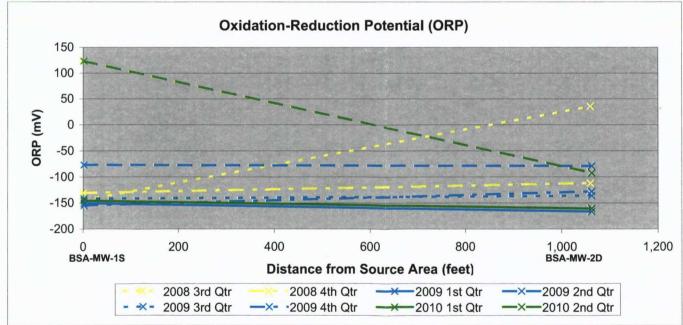


BENZENE STORAGE AREA PLUME -- TRENDS WITH DISTANCE (BSA-MW-1S to BSA-MW-2D)

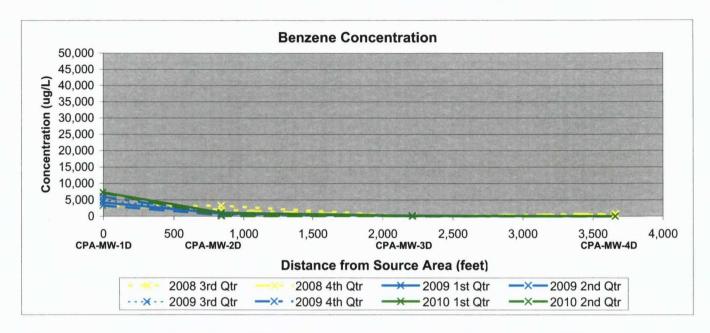


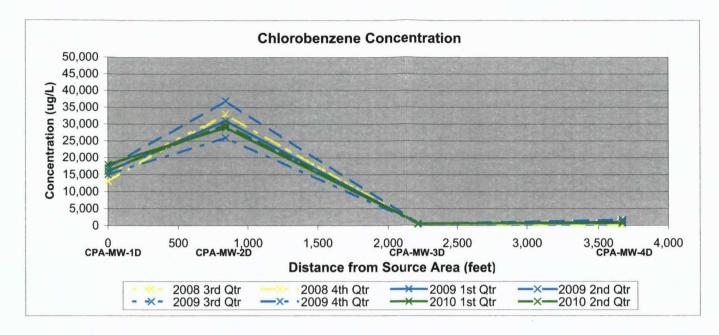


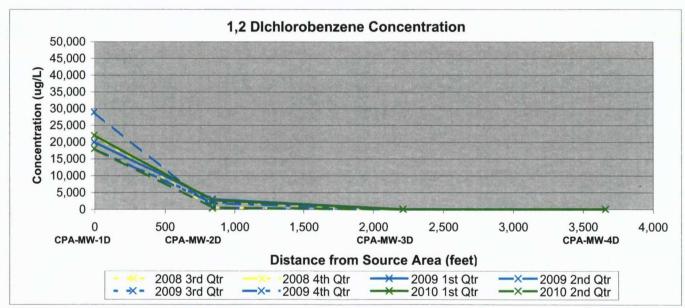


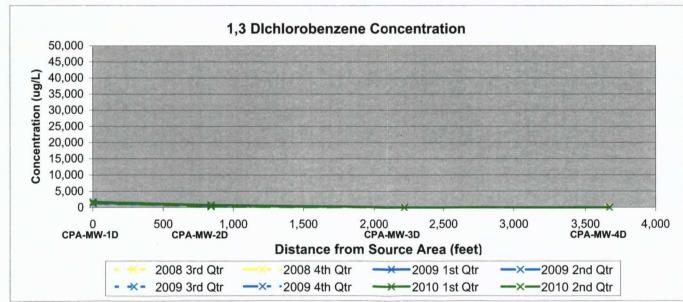

BENZENE STORAGE AREA PLUME -- TRENDS WITH DISTANCE

(BSA-MW-1S to BSA-MW-2D)

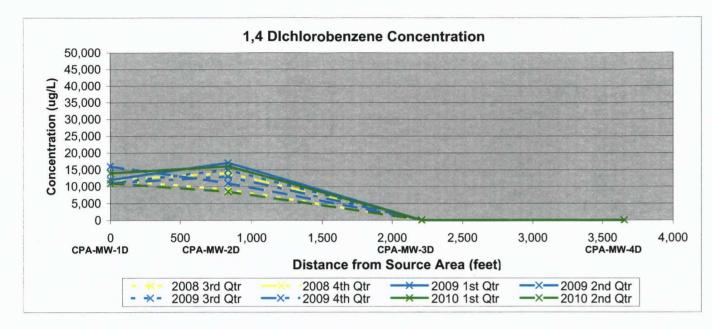


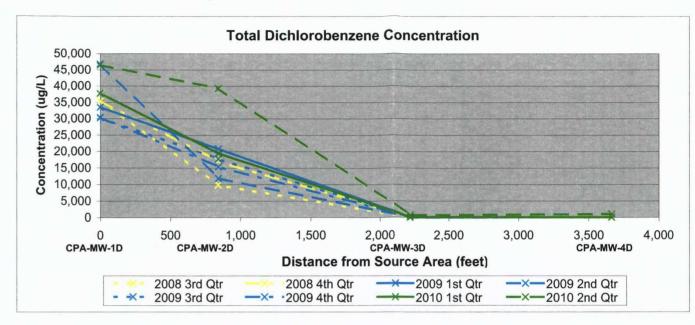


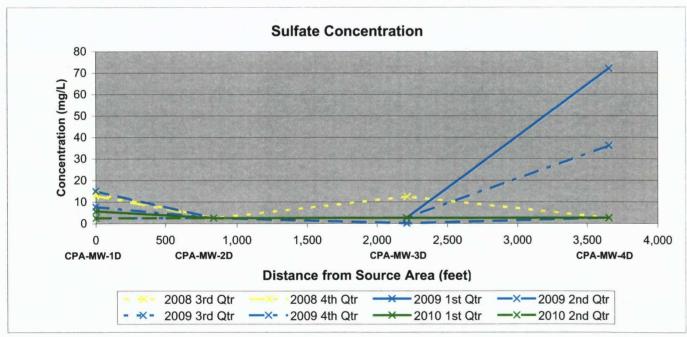


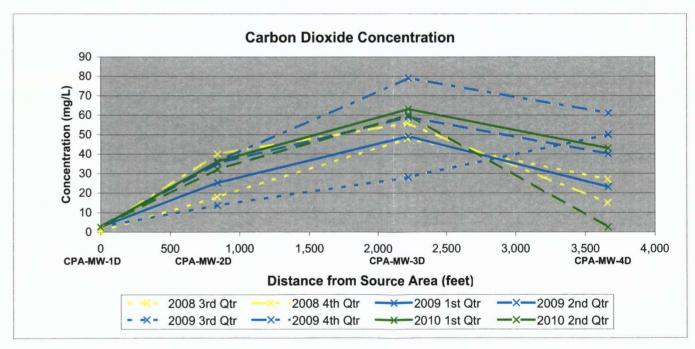

CHLOROBENZENE PROCESS AREA (CPA) PLUME -- TRENDS WITH DISTANCE

(CPA-MW-1D to CPA-MW-2D to CPA-MW-3D to CPA-MW-4D)

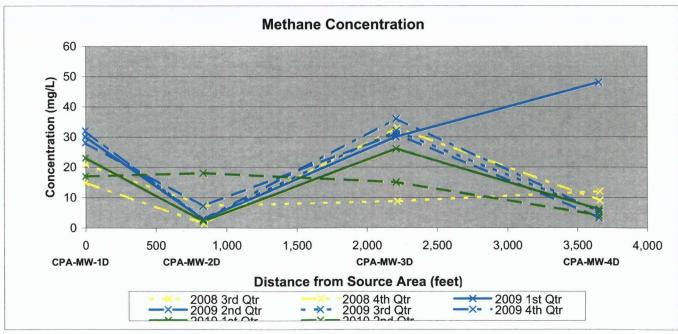


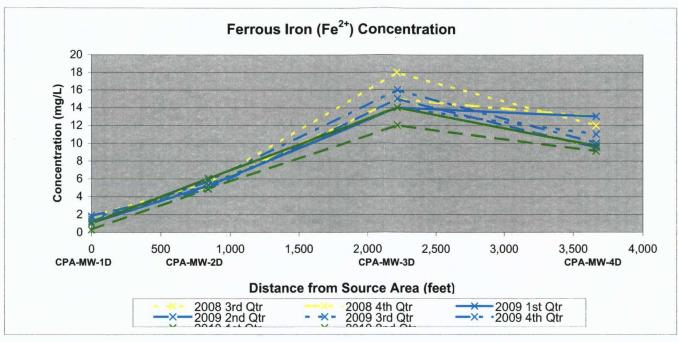


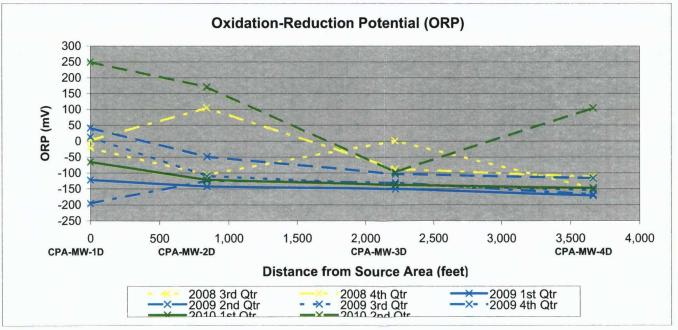



CHLOROBENZENE PROCESS AREA (CPA) PLUME -- TRENDS WITH DISTANCE

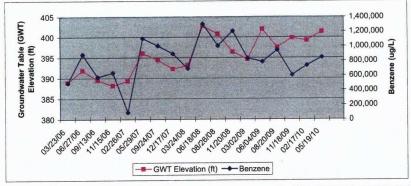
(CPA-MW-1D to CPA-MW-2D to CPA-MW-3D to CPA-MW-4D)

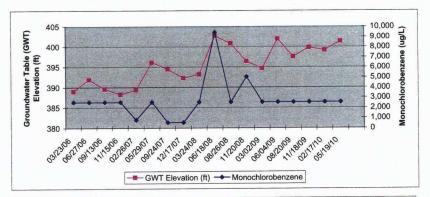


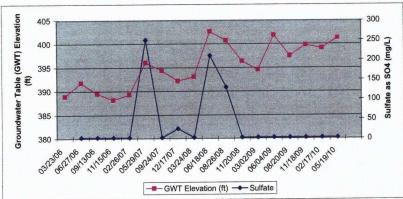


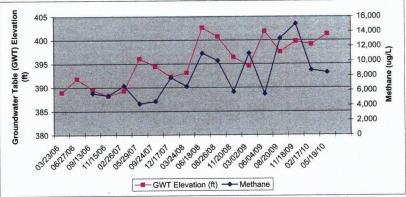

CHLOROBENZENE PROCESS AREA (CPA) PLUME -- TRENDS WITH DISTANCE

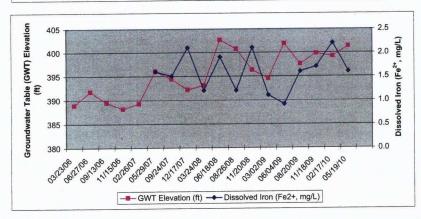
(CPA-MW-1D to CPA-MW-2D to CPA-MW-3D to CPA-MW-4D)

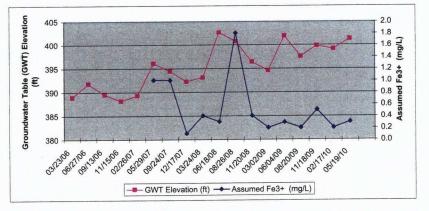


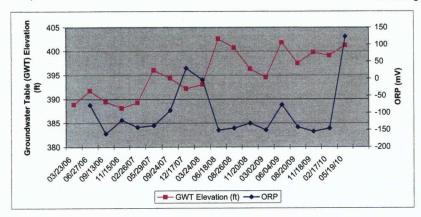


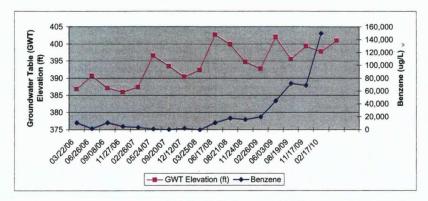


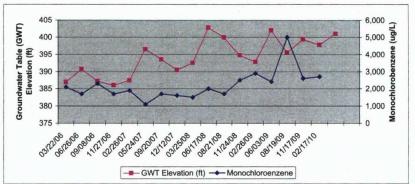


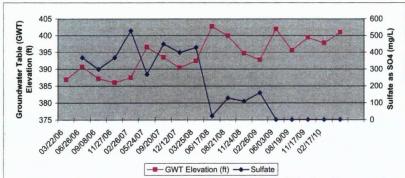

Attachment A

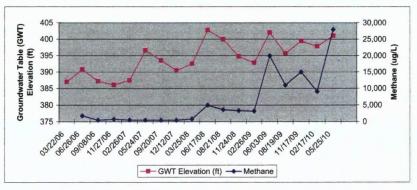


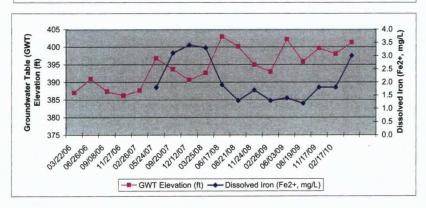


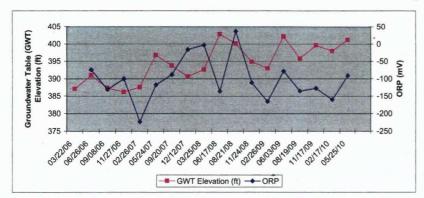


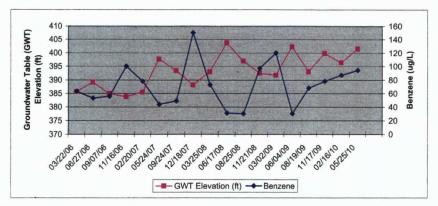


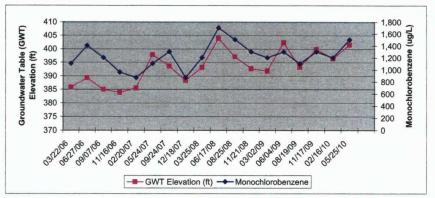


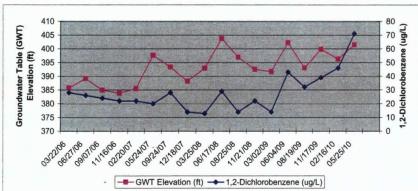


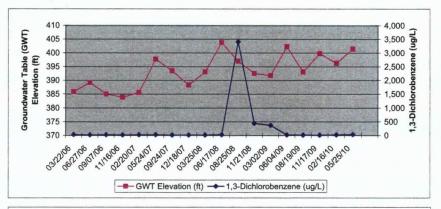


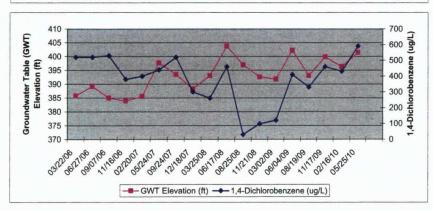


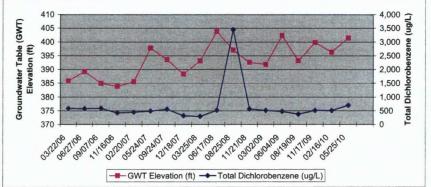


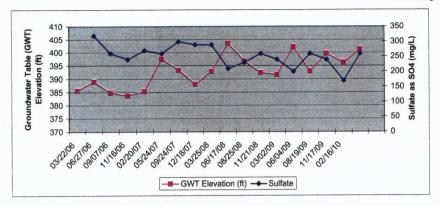


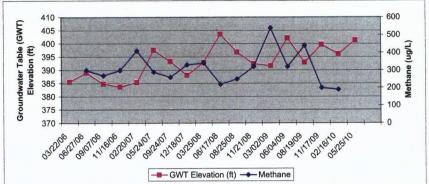


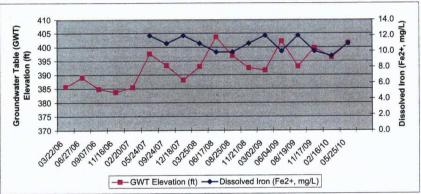


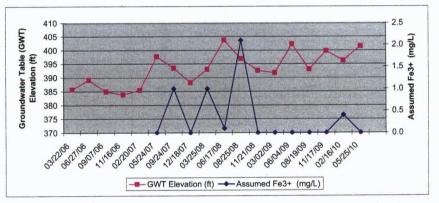


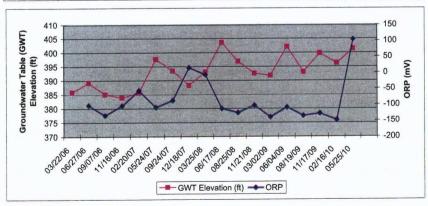


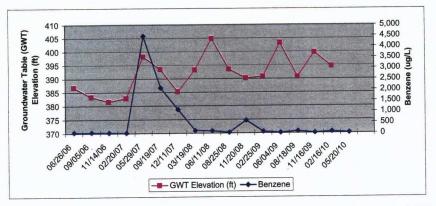


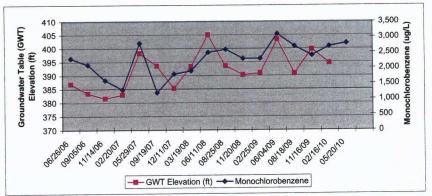


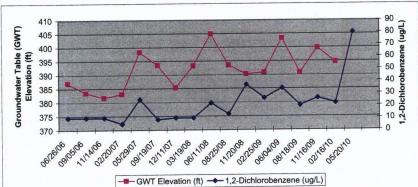


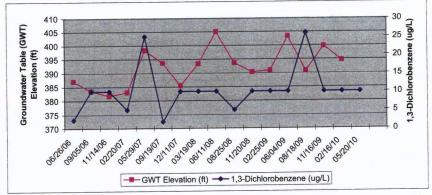


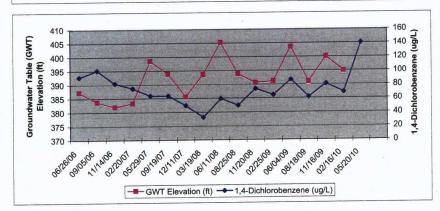


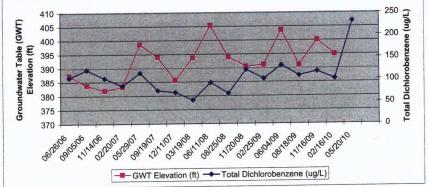


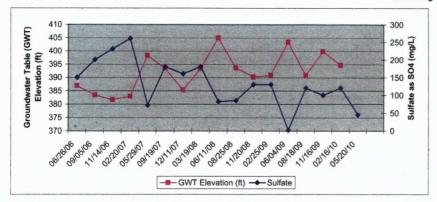


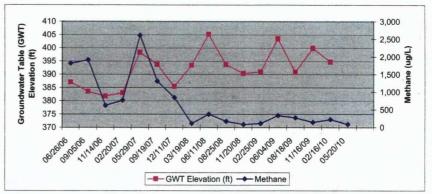


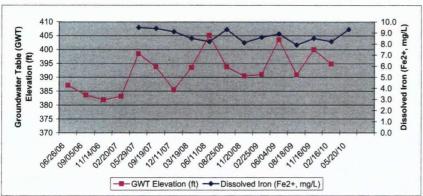


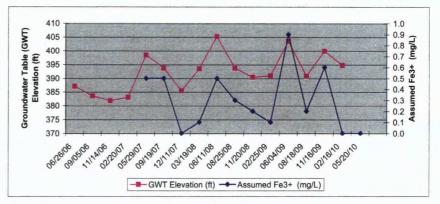


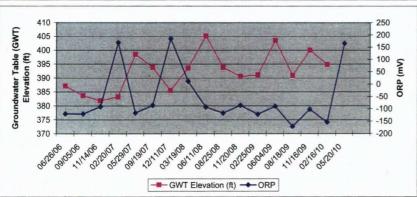


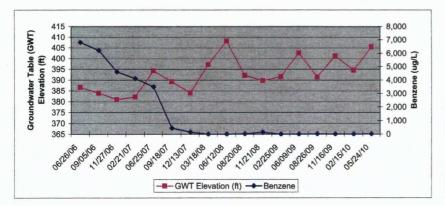


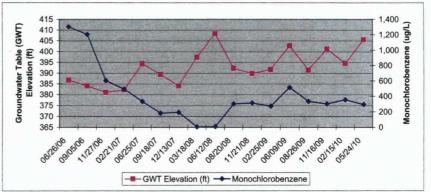


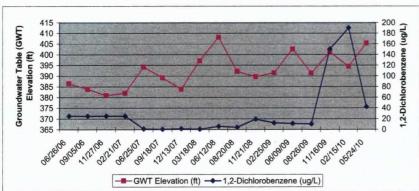


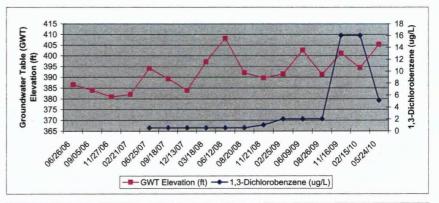


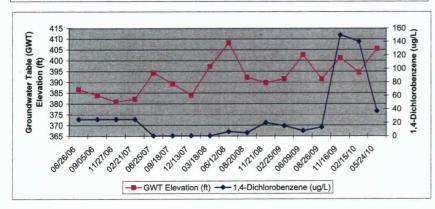


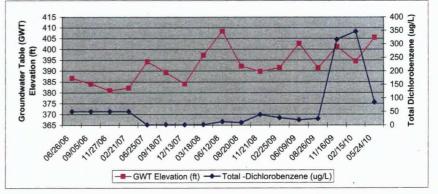


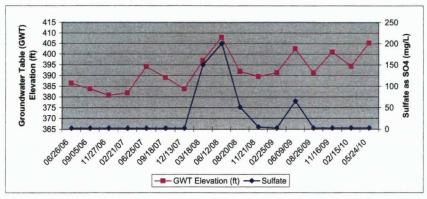


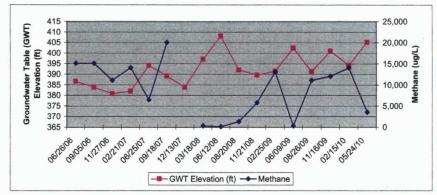


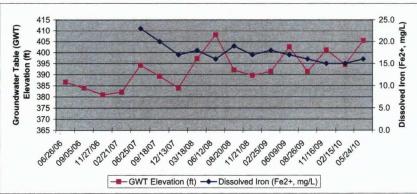


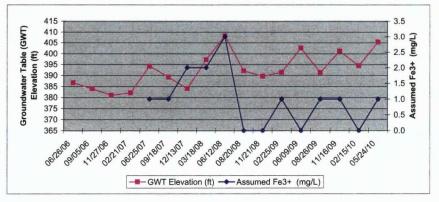


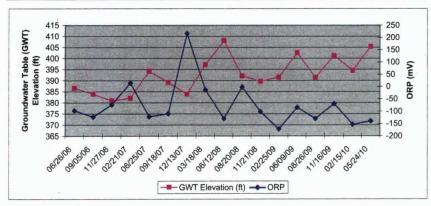


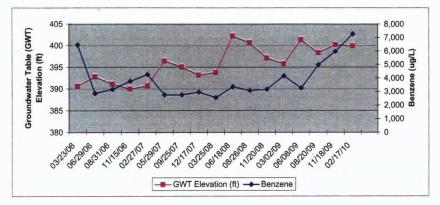


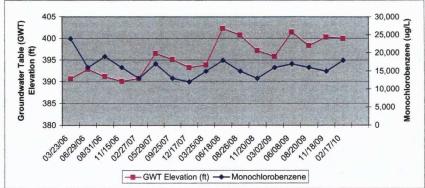


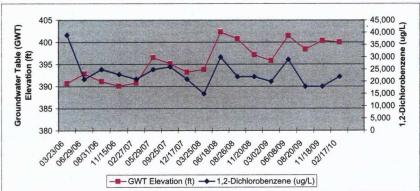


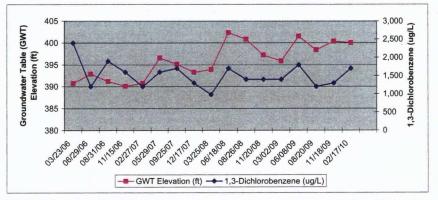


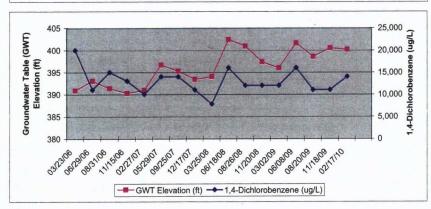


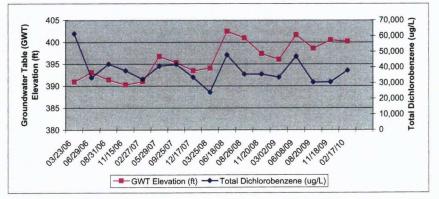


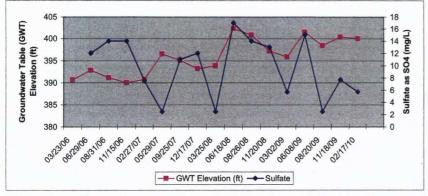


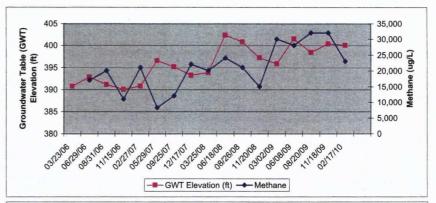


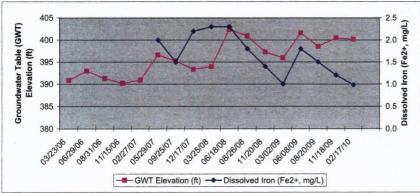


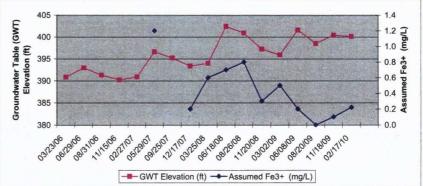


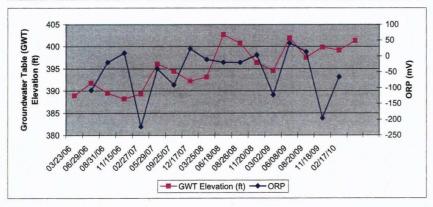


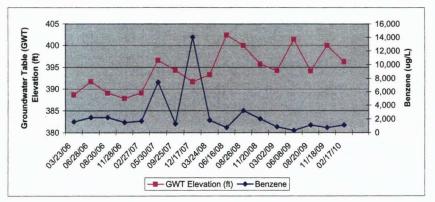


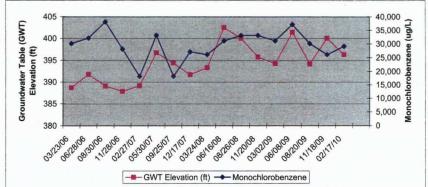


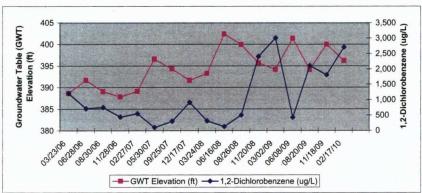


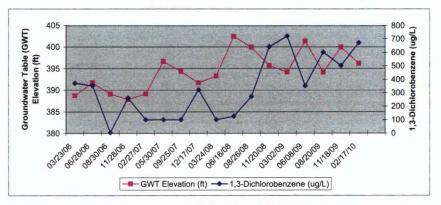


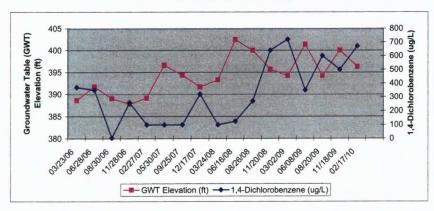

W. G. Krummrich Facility Long-Term Monitoring Program 2010 MNA Evaluation

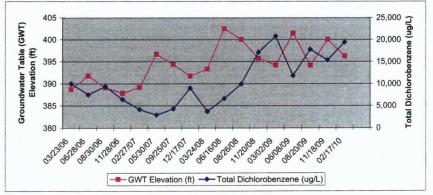


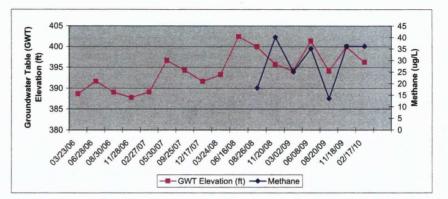


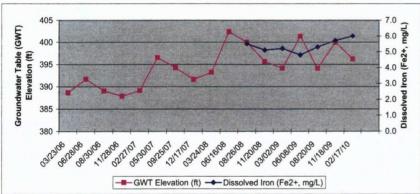


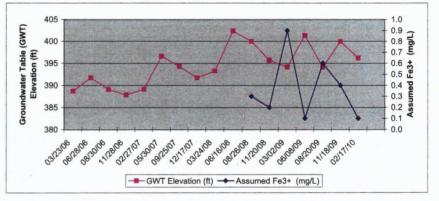


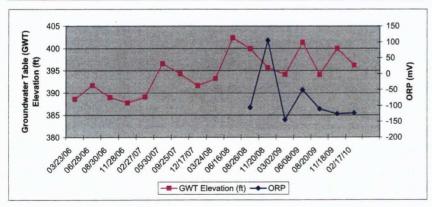


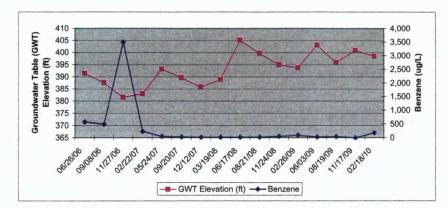


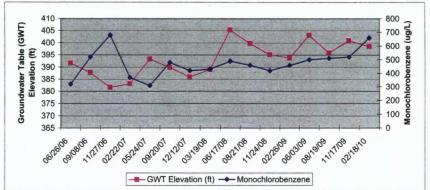


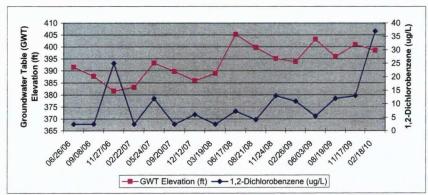


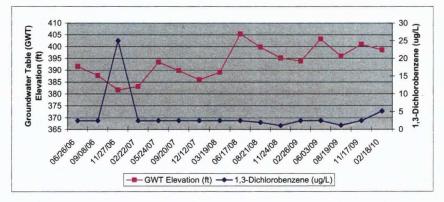


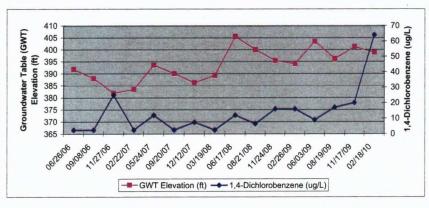

Supporting Data for MNA Evalaution 3Q08 through 2Q10 Comparison of COI and MNA Parameters to Groundwater Levels over Time Monitoring Well CPA-MW-2

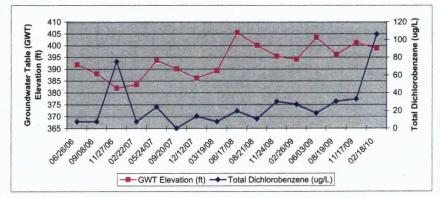


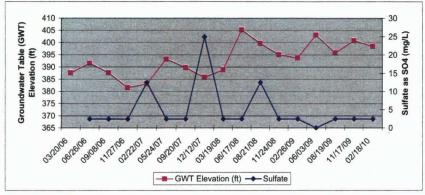


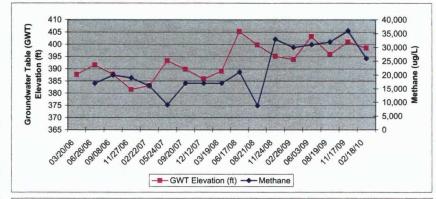


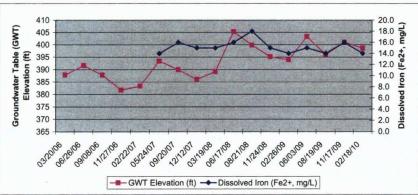


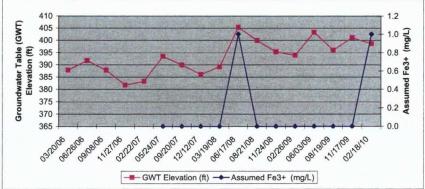

July 2010

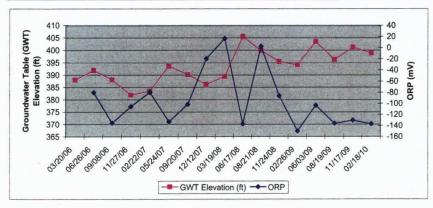


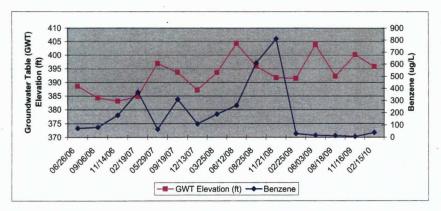


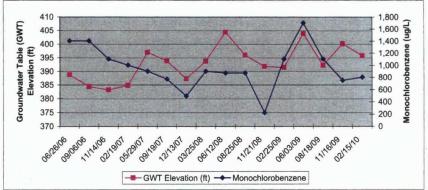


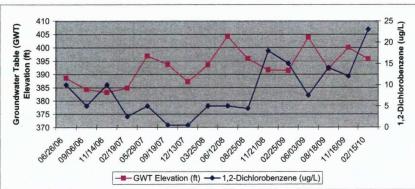


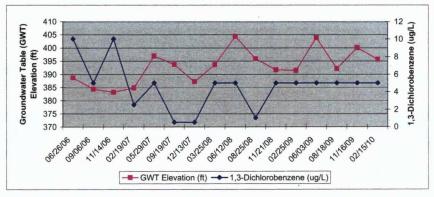


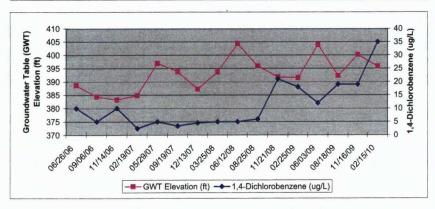


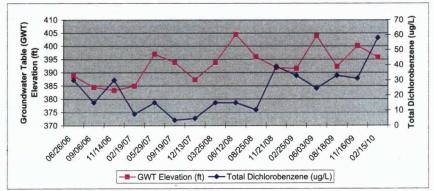


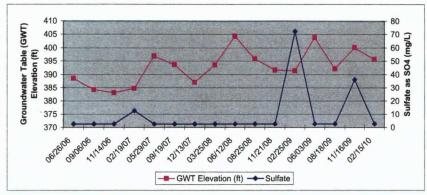


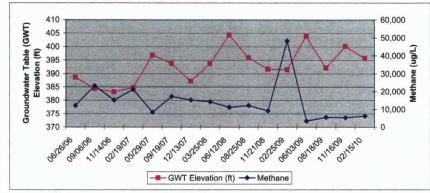


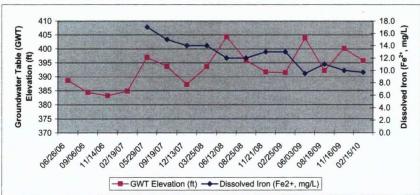


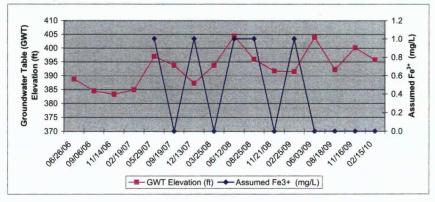


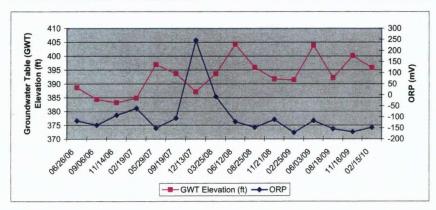


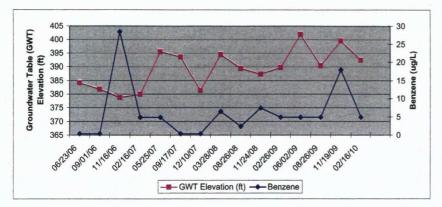


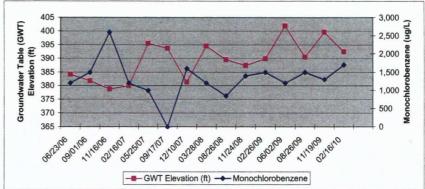


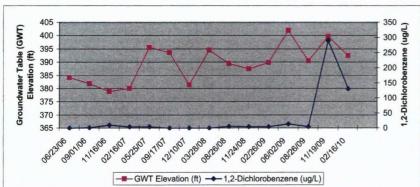


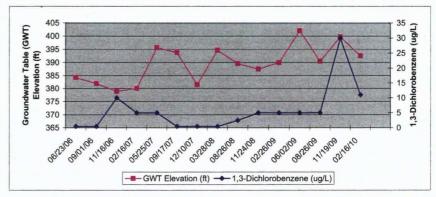


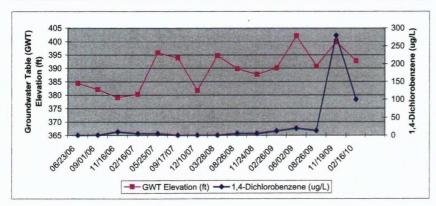


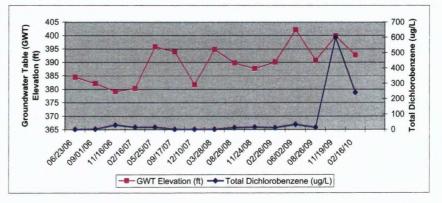


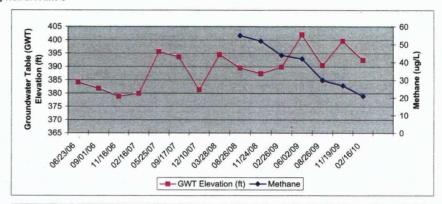


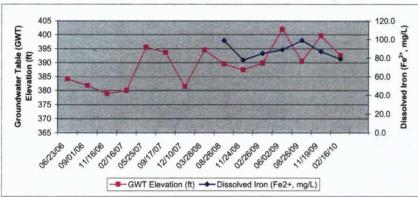


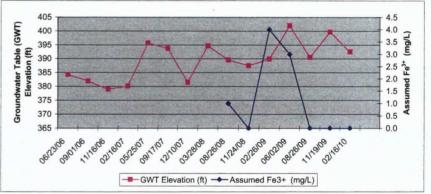


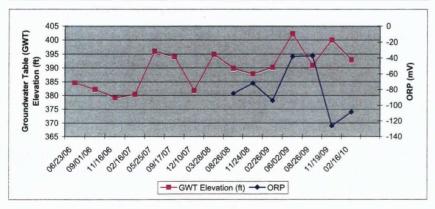












Location	Point ID	Quarterly Effort	Sample ID	Sample Date	Water Level (Depth, ft.)	Groundwater Eelvation (feet)	Benzene (ug/L)	Monochlorobenzene (ug/L)	1,2-Dichlorobenzene (ug/L)	1,3-Dichlorobenzene (ug/L)	1,4-Dichlorobenzene (ug/L)	Total Dichlorobenzene (ug/L)	1,2,4-Trichlorobenzene (ug/L)	Nitrogen, Nitrate (mg/L)	Sulfate as SO4 (mg/L)	Alkalinity (mg/L)	Carbon Dioxide (mg/L)	Methane (ug/L)	Dissolved Oxygen (mg/L)	ORP (mV)	Total Iron (mg/L)	Dissolved Iron (Fe ²⁺ , mg/L)	Total Iron - Fe ²⁺ (mg/L) Assumed to be Fe ³⁺
05414444			BOLDIUL 2000	0.100.10000		200.00	70	1 100	40	40	40	00						10.000	0.00	117.1			<u> </u>
CPAMW04	PS11	2006 2nd Quarter	PSMW11-0606	6/26/2006	32.57	388.63	73	1,400	10	10	10	30	4.7	0.025	2.5	860	76	12,000	0.22	-117.4		\vdash	 '
CPAMW04	PS11	2006 3rd Quarter	PSMW11-0906	9/6/2006	36.88	384.32	82	1,400	5	5	5	15	4.75	0.057	2.5	800	75	23,000	0.58	-137.9		\vdash	
CPAMW04 CPAMW04	PS11 PS11	2006 4th Quarter	PSMW11-1106 PSMW11-0207	11/14/2006 2/19/2007	38.02 36.40	383.18	180 370	1,100	10 3	10	10	30 8	4.7	0.025	2.5	770	130 37	15,000	0.98	-92.3 -60.8			
CPAMW04	PS11	2007 1st Quarter 2007 2nd Quarter	PSMW11-0207	5/29/2007	24.31	384.80 396.89	65	900	5	5	5	15	5	0.08	12.5 2.5	790	50	21,000 8,200	0.46	-150.9	18.0	17.0	1.0
CPAMW04	PS11	2007 2nd Quarter	PSMW11-0907	9/19/2007	27.53	393.67	310	770	1	1	3	3	4.7	0.025	2.5	800 790	40	17,000	0.86	-105.6	14.0	15.0	0.0
CPAMW04	PS11	2007 3rd Quarter	PSMW11-1207	12/13/2007	34.07	387.13	110	490.	1	1	5	5	4.7	0.025	2.5	800	27	15,000	0.46	246.1	15.0	14.0	1.0
CPAMW04	PS11	2007 4th Quarter	PSMW11-0308	3/25/2008	27.60	393.60	190	900	5	5	5	15	4.7	0.025	2.5	790	60	14,000	85.6	-8.4	14.0	14.0	0.0
CPAMW04	PS11	2008 2nd Quarter	PSMW11-0508	6/12/2008	16.93	404.27	260	870	5	5	5	15	4.6	0.025	2.5	810	40	11,000	0.32	-121.8	13.0	12.0	1.0
CPAMW04	PS11	2008 3rd Quarter	1 31V1VV 1 1-0000	8/25/2008	25.37	395.83	610	870	4	1	6	10	4.7	0.025	2.5	830	27	12,000	0.63	-147.7	13.0	12.0	1.0
CPAMW04	PS11	2008 4th Quarter		11/21/2008	29.55	391.65	810	220	18	5	21	39		0.025	2.5	770	15	9,000	6.39	-112.2	13.0	13.0	0.0
CPAMW04	PS11	2009 1st Quarter		2/25/2009	29.80	391.40	30	1,100	15	5	18	33	4.85	0.025	72	810	23	48,000	4.95	-171.6	14.0	13.0	1.0
CPAMW04	PS11	2009 2nd Quarter		6/3/2009	17.37	403.83	15	1,700	8	5	12	25	4.03	0.19	2.5	850	40	3,200	0.73	-117	9.5	9.5	0.0
CPAMW04	PS11	2009 3rd Quarter		8/18/2009	29.06	392.14	12	1,100	14	5	19	33	4.7	0.025	2.5	850	50	5300	0.83	-154.7	11.0	11.0	0.0
CPAMW04	PS12	2009 4th Quarter	***************************************	11/16/2009	21.12	400.08	5	750	12	5	19	31	7.7	0.025	36	770	61	5100	1.4	-168.4	10.0	10.0	0.0
CPAMW04	PS13	2010 1st Quarter		2/15/2010	25.50	395.70	37	800	23	5	35	58	4.7	0.025	2.5	810	43	6000	0.2	-148.4	9.3	9.7	0.0
					20.00			- 000			- 00	- 00	4.1	0.020	2.0	010	10	0000	0.2	1.0.1			
CPAMW05	PS14D	2006 2nd Quarter	PSMW14D-0606	6/23/2006	28.83	384.32	1	1,200	1	1	1	2	4.7							-			
CPAMW05	PS14D	2006 3rd Quarter	PSMW14D-0906	9/1/2006	31.17	381.98	1	1,500	2	1	1	3	4.7										
CPAMW05	PS14D	2006 4th Quarter	PSMW14D-1106	11/16/2006	34.17	378.98	29	2,600	10	10	10	30	4.85										
CPAMW05	PS14D	2007 1st Quarter	PSMW14D-0207	2/16/2007	32.98	380.17	5	1,200	5	5	5	15	4.7						100 100 100				
CPAMW05	PS14D	2007 2nd Quarter	PSMW14D-0507	5/25/2007	17.43	395.72	5	1,000	5	5	5	15	4.7								100.0		
CPAMW05	PS14D	2007 3rd Quarter	PSMW14D-0907	9/17/2007	19.35	393.80	1	1	1	1	1	2	4.7										
CPAMW05	PS14D	2007 4th Quarter	PSMW14D-1207	12/10/2007	31.64	381.51	1	1,600	1	1	1	2	4.8										
CPAMW05	PS14D	2008 1st Quarter	PSMW14D-0308	3/28/2008	18.44	394.71	7	1,200	1	1	1	2	4.7										
CPAMW05	PS14D	2008 3rd Quarter		8/26/2008	23.54	389.61	2.5	850	6	2.5	5	11		0.25	1600	320	51	55	1.28	-85.8	100.0	99.0	1.0
CPAMW05	PS14D	2008 4th Quarter		11/24/2008	25.60	387.55	8	1,400	5	5	5	15		0.025	1500	340	110	52	6.26	-72.7	76.0	78.0	0.0
CPAMW05	PS14D	2009 1st Quarter		2/26/2009	23.20	389.95	5	1,500	5	5	12	12	200	0.025	1400	280	66	44	6.37	-94.7	89.0	85.0	4.0
CPAMW05	PS14D	2009 2nd Quarter		6/2/2009	11.05	402.10	5	1,200	14	5	19	33	42	4	1700	350	190	42	0.68	-38.7	92.0	89.0	3.0
CPAMW05	PS14D	2009 3rd Quarter		8/26/2009	22.54	390.61	5	1,500	5	5	13	13	4.7	0.125	1600	390	150 B	30	1.62	-38	93.0	99.0	0.0
CPAMW05	PS14D	2009 4th Quarter		11/19/2009	13.34	399.81	18	1,300	290	30	280	600	NA	0.025	1600	330	110	27	6.22	-126.9	82.0	87.0	0.0
CPAMW05	PS14D	2010 1st Quarter		2/16/2010	20.51	392.64	5	1,700	130	11	100	241	4.7	0.025	1500	310	170	21	0.11	-109.2	78.0	79.0	0.0
													1.000										
Notes:																							

Notes:
Results in Red are non-detects, half of detection limit

Blanks indicate rounds where a sample was not collected or analyzed.

																			7				
					iter Level (Depth, ft.)	oundwater Eelvation et)	nzene (ug/L)	nochlorobenzene y/L)	,2-Dichlorobenzene ig/L)	,3-Dichlorobenzene ug/L)	-Dichlorobenzene	tal Dichlorobenzene y/L)	,4-Trichlorobenzene //L)	rogen, Nitrate (mg/L)	lfate as SO4 (mg/L)	calinity (mg/L)	rbon Dioxide (mg/L)	thane (ug/L)	ssolved Oxygen (mg/L)	iP (mV)	tal Iron (mg/L)	ssolved Iron s ²⁺ , mg/L)	otal Iron - Fe ^{2*} (mg/L) Assumed to be Fe ^{3*}
Location	Point ID	Quarterly Effort	Sample ID	Sample Date	Š	P. P.	Be	ο M O	1,2 (ug	1,3 (ug	4, t	Tot (ug	1,2 (ug	ž	Su	₹	Ca	Me	Dis	, N	P	Dis (Fe	To As
											Values			(shown in r	ed) are as:	sumed to b	e at half th	e detection l	<u>imit</u> .				
BSAMW01	PS05	2006 1st Quarter	PSMW5-0306	3/23/2006	23.44	388.87	490,000	2,500	2,500	2,500	2,500	7,500	4.7										
BSAMW01	PS05	2006 2nd Quarter	PSMW5-0606	6/27/2006	20.57	391.74	880,000	2,500	2,500	2,500	2,500	7,500	4.7	0.025	2.5	860	60		0.54	-77.4			$\overline{}$
BSAMW01	PS05	2006 3rd Quarter	PSMW5-0906	9/13/2006	22.85	389.46	570,000	2,500	2,500	2,500	2,500	7,500	4.7	0.025	2.5	790	26	5,600	1.02	-161.3			
BSAMW01	PS05	2006 4th Quarter	PSMW5-1106	11/15/2006	24.18	388.13	630,000	2,500	2,500	2,500	2,500	7,500	4.8	0.025	2.5	730	29	5,300	1.39	-121.2			
BSAMW01	PS05	2007 1st Quarter	PSMW5-0207	2/26/2007	23.05	389.26	91,000	770	250	250	250	750	4.9	0.025	2.5	830	23	6,600	0.61	-142.2			
BSAMW01	PS05	2007 2nd Quarter	PSMW5-0507	5/29/2007	16.28	396.03	1,100,000	2,500	2,500	2,500	2,500	7,500	5	0.025	250	720	22	4,200	0.92	-137.2	2.6	1.6	1.0
BSAMW01	PS05	2007 3rd Quarter	PSMW05-0907	9/24/2007	17.95	394.36	1,000,000	500	500	500	500	1,500	4.8	0.025	2.5	950	32 B	4,500	0.41	-92.8	2.5	1.5	1.0
BSAMW01	PS05	2007 4th Quarter	PSMW05-1207	12/17/2007	20.15	392.16	890,000	500	500	500	500	1,500	4.7	0.025	25	850	23 B	7,700	0.7	30.4	2.2	2.1	0.1
BSAMW01	PS05	2008 1st Quarter	PSMW05-0308	3/24/2008	19.27	393.04	690,000	2,500	2,500	2,500	2,500	7,500	4.7	0.025	2.5	860	32 B	6,500	2.4	-4.6	1.6	1.2	0.4
BSAMW01	PS05	2008 2nd Quarter	PSMW05-0608	6/18/2008	9.71	402.60	1,300,000	9,400	2,500	2,500	2,500	7,500	4.75	0.025	210	860	37	11,000	0.24	-150.9	2.2	1.9	0.3
BSAMW01	PS05	2008 3rd Quarter		8/26/2008	11.62	400.69	1,000,000	2,500	2,500	2,500	2,500	7,500		0.025	130	870	21	10,000	0.57	-145.1	3.0	1.2	1.8
BSAMW01	PS05	2008 4th Quarter		11/20/2008	16.00	396.31	1,200,000	5,000	5,000	5,000	5,000	15,000		0.025	2.5	930	32	5,800	6.87	-130.7	2.5	2.1	0.4
BSAMW01	PS05	2009 1st Quarter		3/2/2009	17.82	394.49	830,000	2,500	2,500	2,500	2,500	7,500	4.85	0.125	2.5	850	22	11,000	10.24	-150.8	1.3	1.1	0.2
BSAMW01	PS05	2009 2nd Quarter		6/4/2009	10.48	401.83	780,000	2,500	2,500	2,500	2,500	7,500		2.5	2.5	960	22	5,500	0.75	-77.0	1.2	0.9	0.3
BSAMW01	PS05	2009 3rd Quarter		8/20/2009	14.84	397.47	940,000	2,500	2,500	2,500	2,500	7,500	4.7	0.025	2.5	900	11.5	13,000	4.55	-142.2	1.8	1.6	0.2
BSAMW01	PS05	2009 4th Quarter		11/18/2009	12.57	399.74	600,000	2500	2500	2500	2500	7,500		0.025	2.5	790	27	15000	1.57	-155.0	2.2	1.7	0.5
BSAMW01	PS05	2010 1st Quarter		2/17/2010	13.22	399.09	730,000	2500	2500	2500	2500	7,500	4.85	0.025	2.5	920	33	8700	0.06	-145.9	2.4	2.2	0.2
BSAMW01	PS05	2010 2nd Quarter		5/19/2010	11.05	401.26	840,000	2500	2500	2500	2500	7,500		0.025	2.5	930	31	8400	0.6	123.2	1.9	1.6	0.3
DO444400	2000	2000 4 4 0	DOLUMO 0000	0.100.100.00	00.40		44.000	0.400	===		100	100		_		-		-					\vdash
BSAMW02	PS08	2006 1st Quarter	PSMW8-0306	3/22/2006	28.12	387.01	11,000	2,100	50	50	100	100	4.7					1000		75.0			
BSAMW02	PS08	2006 2nd Quarter	PSMW8-0606	6/26/2006	24.28	390.85	1,900	1,700	1	1	7	7	4.7	0.025	370	600	55	1,800	0.9	-75.6			
BSAMW02	PS08	2006 3rd Quarter	PSMW8-0906	9/8/2006	27.85	387.28	11,000	2,300	25	25	25	75	4.7	0.025	300	570	72	520	0.67	-131.9			
BSAMW02	PS08	2006 4th Quarter	PSMW8-1106	11/27/2006	29.01	386.12	5,500	1,700	25	25	25	75	4.8	0.025	370	600	59	770	1.3	-100.9			
BSAMW02	PS08	2007 1st Quarter	PSMW8-0207	2/26/2007	27.60	387.53	4,000	1,900	25	25	25	75	4.8	0.025	530	640	29	600	0.73	-223.7	0.4	4.0	0.3
BSAMW02	PS08	2007 2nd Quarter	PSMW8-0507	5/24/2007	18.45	396.68	1,400	1,100	8	3	13	21	5	0.025	270	710	22	530	2.19	-118	2.1	1.8 3.1	0.3
BSAMW02	PS08 PS08	2007 3rd Quarter	PSMW08-0907	9/20/2007	21.53	393.60	810	1,700	10	10	10	30	4.7	0.025	450	640	29	470	0.21	-88.9	3.3		-
BSAMW02		2007 4th Quarter	PSMW08-1207	12/12/2007	24.62	390.51	2,400	1,600	10	10	10	30	4.85	0.025	400	650	28	470	0.42	-16.9	3.8	3.4	0.4
BSAMW02	PS08	2008 1st Quarter	PSMW08-0308	3/25/2008	22.58	392.55	240	1,500	5	5	5	15	4.7	0.025	430	660	35	850	2.4	-3.6	3.6	3.3	0.3
BSAMW02	PS08	2008 2nd Quarter	PSMW08-0608	6/17/2008	12.29	402.84	11,000	2,000	50	50	50	150	5	0.025	25	730	45	5,000	0.32	-136.2	2.1	1.9	1.6
BSAMW02	PS08	2008 3rd Quarter		8/21/2008	15.10	400.03	18,000	1,700	100	100	100	300		0.025	130	710	26	3,600	0.06	35.8		1.3	
BSAMW02	PS08	2008 4th Quarter		11/24/2008	20.31	394.82	16,000	2,500	100	100	100	300	4.05	0.025	110	660	29	3,300	5.8	-112	1.8	1.7	0.1
BSAMW02 BSAMW02	PS08 PS08	2009 1st Quarter		2/26/2009	22.27	392.86 402.08	20,000	2,900	100	100	5	205	4.85	0.025	160	700 760	17 37	3,200	7.13	-166.3	1.4		0.1
BSAMW02 BSAMW02	PS08 PS08	2009 2nd Quarter		6/3/2009	13.05 19.45		45,000	2,400	100	100	100	300	4.7	0.073	2.5	760	18	20000 11000	0.55	-79.2	1.6	1.4	0.2
	PS08	2009 3rd Quarter		8/19/2009 11/17/2009		395.68	72000	5000	100	100	100	300	4.7	0.025	2.5		37	15000	1.18	-136		1.8	0.0
BSAMW02		2009 4th Quarter			15.62	399.51	69000	2600	500	500	500	1,500	A 7E	0.025		670				-128	1.8		
BSAMW02	PS08	2010 1st Quarter		2/17/2010	17.23	397.90	150000	2700	500	500	500	1,500	4.75	0.025	2.5	700	57	9100	0.09	-160.6	1.9	1.8	0.1
BSAMW02	PS08	2010 2nd Quarter		5/25/2010	14.00	401.13	120,000	1,300	500	500	500	1,500		0.025	2.5	720	60	28000	6.45	-92.5	3.2	3.0	0.2
BSAMW02-DUP	PS08-DUP	2007 1st Quarter	PSMW8-0207-AD	2/26/2007	27.60	387.53	3,800	2,000	25	25	25	75	4.85	0.072	540	640	27	630	0.73	-223.7			
BSAMW02-DUP	PS08-DUP	2007 1st Quarter	PSMW8-0507-AD	5/24/2007	18.45	396.68	880	730			25 8	8	4.85	0.072	540	040	21	030	0.73	-223.1			
BSAMW02-DUP	PS08-DUP	2007 2nd Quarter	PSMW08-0907-AD	9/20/2007	21.53	393.60	750		3	3		_		+									
BSAMW02-DUP	PS08-DUP	2007 3rd Quarter	PSMW08-0907-AD		24.62	393.60	2,700	1,600	2	1	8	10	4.7					+					
BSAMW02-DUP	PS08-DUP	2007 4th Quarter	PSMW08-1207-AD	12/12/2007 3/25/2008	22.58	390.51	2,700	1,600 1,500	5	5	10	14	5	-									\vdash
BSAMW02-DUP		2008 2nd Quarter	PSMW08-0608-AD	6/17/2008	12.29	402.84	11,000			50		15	4.85	-									
DOMINIVOZ-DUP	1 300-DOP	2000 Ziid Quaiter	1 SIVIVVUG-UUUG-AD	0/1//2000	12.29	402.04	11,000	2,000	50	50	50	150	4.85										

					ıter Level (Depth, ft.)	oundwater Eelvation et)	nzene (ug/L)	onochlorobenzene g/L)	,2-Dichlorobenzene ug/L)	3-Dichlorobenzene ig/L)	,4-Dichlorobenzene ug/L)	otal Dichlorobenzene ug/L)	,2,4-Trichlorobenzene ug/L)	irogen, Nitrate (mg/L)	lfate as SO4 (mg/L)	kalinity (mg/L)	rbon Dioxide (mg/L)	thane (ug/L)	ssolved Oxygen (mg/L)	RP (mV)	tal Iron (mg/L)	ssolved Iron ³²∙, mg/L)	otal Iron - Fe ²⁺ (mg/L) ssumed to be Fe ³⁺
Location	Point ID	Quarterly Effort	Sample ID	Sample Date	×	g ê	Be	M Gi	, 1, 3,	1,3 (ug	4, <u>9</u>	or ju	1,2 (ug	ž	ng S	₹	ca	ž	ă	P.	<u></u>	릴뿐	As T
201111100	2010	2000 4 1 0 1	DOI 11/10 0000	0.100.100.00	20.00	005.75		4.400	00	00	500	570											
BSAMW03	PS12	2006 1st Quarter	PSMW12-0306	3/22/2006	29.99	385.75	63	1,100	28	28	520	576	4.75	0.025	220	400	21	200	0.21	102			
BSAMW03 BSAMW03	PS12 PS12	2006 2nd Quarter 2006 3rd Quarter	PSMW12-0606 PSMW12-0906	6/27/2006 9/7/2006	26.54 30.77	389.20 384.97	53 56	1,400 1,200	26 24	20	520 530	566 580	4.7	0.025	320 260	490 480	21	300 270	0.31	-102 -133.2			
BSAMW03	PS12	2006 3rd Quarter	PSMW12-0906 PSMW12-1106	11/16/2006	31.88	383.86	100	960	22	15	380	417	4.7	0.025	240	460	93	300	0.77	-103.5			
BSAMW03	PS12	2007 1st Quarter	PSMW12-0207	2/20/2007	30.22	385.52	78	870	22	25	400	447	4.7	0.025	270	480	36	410	0.23	-56.2			
BSAMW03	PS12	2007 1st Quarter	PSMW12-0507	5/24/2007	18.04	397.70	44	1,100	20	23	440	483	5	0.025	260	510	21	290	1.23	-108.2	11.0	12.0	0.0
BSAMW03	PS12	2007 2rid Quarter	PSMW12-0907	9/24/2007	22.27	393.47	49	1,300	28	10	520	548	4.7	0.025	300	490	38 B	260	0.47	-86.8	12.0	11.0	1.0
BSAMW03	PS12	2007 3rd Quarter	PSMW12-1207	12/18/2007	27.52	388.22	150	870	14	13	300	313	4.7	0.025	290	490	40 B	330	0.96	16.2	12.0	12.0	0.0
BSAMW03	PS12	2008 1st Quarter	PSMW12-0308	3/25/2008	22.69	393.05	73	1,200	13	13	260	286	4.9	0.025	290	500	36 B	340	47.7	-6.5	12.0	11.0	1.0
BSAMW03	PS12	2008 2nd Quarter	PSMW12-0608	6/17/2008	12.01	403.73	31	1,700	29	21	460	510	4.75	0.025	210	500	43	220	0.39	-112.5	10.0	9.9	0.1
BSAMW03	PS12	2008 3rd Quarter	1 011111 12-0000	8/25/2008	18.78	396.96	30	1,500	14	3,400	30	3,444	4.70	0.025	230	500	19	250	0.53	-125.1	12.0	9.9	2.1
BSAMW03	PS12	2008 4th Quarter		11/21/2008	23.20	392.54	97	1,300	22	440	97	559		0.025	260	500	8.2	320	6.48	-102.6	11.0	11.0	0.0
BSAMW03	PS12	2009 1st Quarter		3/2/2009	23.98	391.76	120	1,200	14	370	120	504	4.85	0.125	240	490	26	540	9.23	-139.2	12.0	12.0	0.0
BSAMW03	PS12	2009 2nd Quarter		6/4/2009	13.50	402.24	30	1,300	43	18	410	471	1.00	4.7	200	500	23	320	0.84	-109	10.0	10.0	0.0
BSAMW03	PS12	2009 3rd Quarter		8/19/2009	22.66	393.08	68	1100	32	10	330	372	4.7	0.025	260	510	16	440	2.54	-135	12.0	12.0	0.0
BSAMW03	PS12	2009 4th Quarter		11/17/2009	15.95	399.79	78	1300	39	5	460	504	NA	0.025	240	480	43	200	1.4	-128	9.6	10.0	0.0
BSAMW03	PS12	2010 1st Quarter		2/16/2010	19.45	396.29	87	1200	46	20	430	496	4.85	0.025	170	490	48	190	148.7	-148.7	9.8	9.4	0.4
BSAMW03	PS12	2010 2nd Quarter		5/25/2010	14.28	401.46	94	1,500	71	31	590	692		0.025	260	500	34	380	4.3	104.5	11.0	11.0	0.0
BSAMW03-DUP	PS12-DUP	2006 1st Quarter	PSMW12-0306-AD	3/22/2006	29.99	385.75	61	1,000	26	26	470	522	4.7										
BSAMW03-DUP	PS12-DUP	2006 4th Quarter	PSMW12-1106-AD	11/16/2006	31.88	383.86	86	980	21	5	400	421	4.85	22.5000=									
BSAMW03-DUP	PS12-DUP	2007 1st Quarter	PSMW12-0207-AD	2/20/2007	30.22	385.52	90	1,000	24	32	510	566	4.8	0.025	280	480	33	400	0.23	-56.2			
BSAMW03-DUP	PS12-DUP	2007 3rd Quarter	PSMW12-0907-AD	9/24/2007	22.27	393.47	50	1,300	29	10	540	569	4.7										
									35 (3993)	The second			V										
BSAMW04	PS16D	2006 2nd Quarter	PSMW16D-0606	6/26/2006	37.67	387.02	53	2,300	10	2	90	102	4.7	0.025	150	610	63	1,800	0.45	-121.1			
BSAMW04	PS16D	2006 3rd Quarter	PSMW16D-0906	9/5/2006	41.17	383.52	51	2,100	10	10	100	120	4.75	0.025	200	590	58	1,900	0.82	-121.6			
BSAMW04	PS16D	2006 4th Quarter	PSMW16D-1106	11/14/2006	42.94	381.75	38	1,600	10	10	81	101	4.7	0.025	230	560	190	610	0.83	-92.3			
BSAMW04	PS16D	2007 1st Quarter	PSMW16D-0207	2/20/2007	41.64	383.05	32	1,300	5	5	74	84	4.85	0.025	260	520	38	760	0.74	166.6			
BSAMW04	PS16D	2007 2nd Quarter	PSMW16D-0507	5/29/2007	26.30	398.39	4,500	2,800	25	25	63	113	5	0.025	72	590	36	2,600	0.68	-117.5	10.0	9.5	0.5
BSAMW04	PS16D	2007 3rd Quarter	PSMW16D-0907	9/19/2007	31.05	393.64	2,100	1,200	9	2	63	73	4.7	0.025	180	580	36	1,300	0.27	-86.9	9.9	9.4	0.5
BSAMW04	PS16D	2007 4th Quarter	PSMW16D-1207	12/11/2007	39.31	385.38	1,100	1,800	10	10	49	69	4.8	0.025	160	570	31	830	0.53	182.7	8.9	9.1	0.0
BSAMW04	PS16D	2008 1st Quarter	PSMW16D-0308	3/19/2008	31.29	393.40	130	1,900	10	10	32	52	4.85	0.025	180	560	40	110	3.7	10.7	8.6	8.5	0.1
BSAMW04	PS16D	2008 2nd Quarter	PSMW16D-0608	6/11/2008	19.60	405.09	120	2,500	22	10	59	91	4.9	0.025	82	720	38	370	0.84	-93.8	8.7	8.2	0.5
BSAMW04	PS16D	2008 3rd Quarter		8/25/2008	31.05	393.64	48	2,600	13	5	49	67		0.025	85	660	27	170	0.48	-118	9.6	9.3	0.3
BSAMW04	PS16D	2008 4th Quarter		11/20/2008	34.36	390.33	590	2,300	37	10	73	120	4.7	0.025	130	600	40	110	5.85	-86.9	8.3	8.1 8.6	0.2
BSAMW04	PS16D	2009 1st Quarter		2/25/2009	33.76	390.93	82	2,300	26	10	64	100	4.7	0.025	130 2.5	720	36	110 330	6.28 0.88	-122.5 -91	9.8	8.9	0.1
BSAMW04	PS16D	2009 2nd Quarter		6/4/2009	21.23	403.46	26	3,100	34	10	86	130	4.85		120		_				8.1	7.9	0.9
BSAMW04	PS16D	2009 3rd Quarter		8/18/2009	33.90	390.79	99	2700	20	26	61	107	4.85	0.025	100	650 600	66 B 58	270 140	1.11	-172.3 -103.1	9.1	8.5	0.2
BSAMW04 BSAMW04	PS16D	2009 4th Quarter		11/16/2009	24.81	399.88	23 73	2400	26	10	80	116	4.7	0.025	120	610	63	220	0.2	-103.1	7.2	8.2	0.0
BSAMW04	PS16D PS16D	2010 1st Quarter 2010 2nd Quarter		2/16/2010 5/20/2010	29.98	394.71	26	2700 2,800	22 80	10 10	68 140	100 230	4.7	0.025	45	660	36	86	0.2	163.8	9.3	9.3	0.0
DOAWWW4	F310D	2010 Ziid Quarter		3/20/2010	V-2 12 /27		20	2,000	00	10	140	230		0.023	40	000	30	- 00	0.35	103.0	0.0	3.3	0.0
BSAMW04-DUP	50405 BUS	000000 100 1	PSMW16D-0606-AD	6/26/2006	37.67	387.02	50	2,000	10	10	76	76	4.7	0.025	150	610	59	1.900					

, =					vel (Depth, ft.)	ater Eelvation	(ng/L)	probenzene	orobenzene	orobenzene	orobenzene	hlorobenzene	hlorobenzene	Nitrate (mg/L)	s SO4 (mg/L)	(mg/L)	ioxide (mg/L)	(ug/L)	J Oxygen (mg/L)		(mg/L)	ved Iron mg/L)	r - Fe ²⁺ (mg/L) to be Fe ³⁺
Location	Point ID	Quarterly Effort	Sample ID	Sample Date	Nater Le	Groundw feet)	Senzene	Monochic (ug/L)	1,2-Dichle (ug/L)	1,3-Dichle ug/L)	1,4-Dichle (ug/L)	rotal Dic ug/L)	1,2,4-Tric ug/L)	Vitrogen,	Sulfate as	Alkalinity	Carbon D	Methane	Dissolved	ORP (mV)	Fotal Iron	Jissolved Fe²+, mg	Total Iron Assumed
									,				, 0		- 0,								
BSAMW05	PS15D	2006 2nd Quarter	PSMW15D-0606	6/26/2006	33.90	386.59	6,800	1,300	25		25	50	4.7	0.025	2.5	780	120	15,000	1.01	-96.3			
BSAMW05	PS15D	2006 3rd Quarter	PSMW15D-0906	9/5/2006	36.58	383.91	6,200	1,200	25		25	50	4.7	0.025	2.5	780	74	15,000	0.91	-122.5			
BSAMW05	PS15D	2006 4th Quarter	PSMW15D-1106	11/27/2006	39.60	380.89	4,600	600	25		25	50	5	0.025	2.5	810	95	11,000	0.77	-72.8			
BSAMW05	PS15D	2007 1st Quarter	PSMW15D-0207	2/21/2007	38.42	382.07	4,100	490	25		25	50	4.85	0.025	2.5	740	55	14,000	0.44	14.5			
BSAMW05	PS15D(R)	2007 2nd Quarter	PSMW15D(R)-0507	6/25/2007	26.27	394.22	3,500	330	1	1	1	1	4.7	0.025	2.5	790	70	6,400	0.31	-121	24.0	23.0	1.0
BSAMW05	PS15D(R)	2007 3rd Quarter	PSMW15D(R)-0907	9/18/2007	31.32	389.17	440	180	1	1	1	2	10	0.025	2.5	770	51	20,000	0.33	-108.5	21.0	20.0	1.0
BSAMW05	PS15D(R)	2007 4th Quarter	PSMW15D(R)-1207	12/13/2007	36.62	383.87	140	190	1	1	1	1	4.8	0.025	2.5	830	36		0.85	216.3	19.0	17.0	2.0
BSAMW05	PS15D(R)	2008 1st Quarter	PSMW15D(R)-0308	3/18/2008	23.34	397.15	1	4	1	1	1	2	4.85	0.025	150	590	25	300	2.7	-13	20.0	18.0	2.0
BSAMW05	PS15D(R)	2008 2nd Quarter	PSMW15D(R)-0608	6/12/2008	12.35	408.14	1	9	6	1	7	13	4.85	0.025	200	590	28	110	0.3	-129	19.0	16.0	3.0
BSAMW05	PS15D(R)	2008 3rd Quarter		8/20/2008	28.45	392.04	18	300	4	1	5	9		0.025	51	830	35	1,300	0.16	-1.8	19.0	19.0	0.0
BSAMW05	PS15D(R)	2008 4th Quarter		11/21/2008	30.90	389.59	130	310	19	1	20	39		0.025	5	780	20	5,700	6.68	-100.2	17.0	17.0	0.0
BSAMW05	PS15D(R)	2009 1st Quarter		2/25/2009	29.08	391.41	2	270	12	2	15	27	4.7	0.025	2.5	810	17	13,000	5.27	-171.9	19.0	18.0	1.0
BSAMW05	PS15D(R)	2009 2nd Quarter		6/9/2009	17.95	402.54	4	510	11	2	8	19		5.1	65	830	54	310	3.13	-84	17.0	17.0	0.0
BSAMW05	PS15D(R)	2009 3rd Quarter		8/26/2009	29.19	391.30	13	330	10	2	13	23	4.7	0.025	2.5	840	78 B	11000	2.33	-129.7	17.0	16.0	1.0
BSAMW05	PS15D(R)	2009 4th Quarter		11/16/2009	19.34	401.15	2.5	300	150	16	150	316		0.025	2.5	760	67	12000	1.13	-69.3	16.0	15.0	1.0
BSAMW05	PS15D(R)	2010 1st Quarter		2/15/2010	26.07	394.42	2.5	350	190	16	140	346	4.7	0.025	2.5	790	31	14000	0.12	-153.3	14.0	15.0	0.0
BSAMW05	PS15D(R)	2010 2nd Quarter		5/24/2010	15.13	405.36	8.9	290	42	5.1	37	84		0.025	2.5	2.5	2.5	3500	0.53	-139.2	17.0	16.0	1.0
										0.000													
CPAMW01	PS03	2006 1st Quarter	PSMW3-0306	3/23/2006	17.52	390.80	6,500	24,000	39,000	2,400	20,000	61,400	1500										
CPAMW01	PS03	2006 2nd Quarter	PSMW3-0606	6/29/2006	15.37	392.95	2,900	16,000	21,000	1,200	11,000	33,200	850	0.025	12	1200	1.3	17,000	0.34	-109.2			
CPAMW01	PS03	2006 3rd Quarter	PSMW3-0806	8/31/2006	17.07	391.25	3,200	19,000	25,000	1,900	15,000	41,900	1100	0.25	14	1200	1.1	20,000	1.7	-21.3			
CPAMW01	PS03	2006 4th Quarter	PSMW3-1106	11/15/2006	18.16	390.16	3,800	16,000	23,000	1,600	13,000	37,600	930	0.25	14	1100	1.3	11,000	0.57	8.5			
CPAMW01	PS03	2007 1st Quarter	PSMW3-0207	2/27/2007	17.45	390.87	4,300	13,000	21,000	1,200	10,000	32,200	1900	0.125	7.5	1000	0.5	21,000	0.69	-224.3			
CPAMW01	PS03	2007 2nd Quarter	PSMW3-0507	5/29/2007	11.71	396.61	2,800	17,000	25,000	1,600	14,000	40,600	850	0.025	2.5	1100	0.5	8,200	1.09	-41	3.2	2.0	1.2
CPAMW01	PS03	2007 3rd Quarter	PSMW03-0907	9/25/2007	13.11	395.21	2,800	13,000	26,000	1,700	14,000	41,700	920	0.25	11	1100	0.5	12,000	0.83	-92		1.5	
CPAMW01	PS03	2007 4th Quarter	PSMW03-1207	12/17/2007	14.98	393.34	3,000	12,000	21,000	1,300	11,000	33,300	1500	0.125	12	1200	0.5	22,000	1.28	22.4	2.4	2.2	0.2
CPAMW01	PS03	2008 1st Quarter	PSMW03-0308	3/25/2008	14.38	393.94	2,600	15,000	15,000	980	7,800	23,780	1100	0.125	2.5	1100	0.5	20,000	340.4	-11.5	2.9	2.3	0.6
CPAMW01	PS03	2008 2nd Quarter	PSMW03-0608	6/18/2008	5.93	402.39	3,400	18,000	30,000	1,700	16,000	47,700	1500	0.25	17	1200	0.5	24,000	0.08	-20.7	3.0	2.3	0.7
CPAMW01	PS03	2008 3rd Quarter	u - Auc-1979	8/26/2008	7.45	400.87	3,100	15,000	22,000	1,400	12,000	35,400		0.25	14	1200	0.5	21,000	-0.01	-21.1	2.6	1.8	0.8
CPAMW01	PS03	2008 4th Quarter		11/20/2008	11.07	397.25	3,200	13,000	22,000	1,400	12,000	35,400		0.25	13	1100	2	15,000	0.25	2.5	1.7	1.4	0.3
CPAMW01	PS03	2009 1st Quarter		3/2/2009	12.41	395.91	4,200	16,000	20,000	1,400	12,000	33,400	660	0.25	5.7	1100	2.5	30,000	9.26	-123.6	1.5	1.0	0.5
CPAMW01		2009 2nd Quarter		6/8/2009	6.75	401.57	3,300	17,000	29,000	1,800	16,000	46,800		0.25	15	1100	2.5	28,000	0.95	40.2	2.0	1.8	0.2
CPAMW01	PS03	2009 3rd Quarter		8/20/2009	9.82	398.50	5000	16000	18000	1,200	11000	30,200	740	0.025	2.5	1100	2.5	32000	2.49	12.2	1.5	1.5	0.0
CPAMW01	PS03	2009 4th Quarter		11/18/2009	7.90	400.42	6000	15000	18000	1,300	11000	30,300		0.025	7.7	1000	2.5	32000	0.62	-197.2	1.3	1.2	0.1
CPAMW01	PS03	2010 1st Quarter		2/17/2010	8.21	400.11	7300	18000	22000	1,700	14000	37,700	870	0.025	5.7	1000	2.5	23000	0.02	-66.6	1.2	1.0	0.2
CPAMW01-DUP		2006 3rd Quarter	PSMW3-0806-AD	8/31/2006	17.07	391.25	3,300	19,000	27,000	1,800	15,000	43,800	1200	0.25	13	1200	1.1	21,000					
CPAMW01-DUP		2007 2nd Quarter	PSMW3-0507-AD	5/29/2007	11.71	396.61	2,600	15,000	23,000	1,500	13,000	37,500	1100										\vdash
CPAMW01-DUP	PS03-DUP	2007 4th Quarter	PSMW03-1207-AD	12/17/2007	14.98	393.34	2,900	12,000	20,000	1,300	11,000	32,300	1000										
CPAMW01-DUP	PS03-DUP	2008 1st Quarter	PSMW03-0308-AD	3/25/2008	14.38	393.94	2,600	15,000	16,000	1,000	8,100	25,100	1100										
CPAMW01-DUP	PS03-D0P	2008 2nd Quarter	PSMW03-0608-AD	6/18/2008	5.93	402.39	3,600	18,000	28,000	1,700	15,000	44,700	1200										

Location	Point ID	Quarterly Effort	Sample ID	Sample Date	Vater Level (Depth, ft.)	froundwater Eelvation feet)	enzene (ug/L)	Aonochlorobenzene ug/L)	,2-Dichlorobenzene ug/L)	,3-Dichlorobenzene ug/L)	,4-Dichlorobenzene ug/L)	otal Dichlorobenzene ug/L)	,2,4-Trichlorobenzene ug/L)	litrogen, Nitrate (mg/L)	ulfate as SO4 (mg/L)	ukalinity (mg/L)	arbon Dioxide (mg/L)	fethane (ug/L)	issolved Oxygen (mg/L)	JRP (mV)	otal Iron (mg/L)	issolved Iron Fe ²⁺ , mg/L)	otal Iron - Fe ^{2*} (mg/L) ssumed to be Fe ^{3*}
Location	Politib	Quarterly Errort	Campie ib	Gumpie Bate	5	9 5		25	F 5			FS	- 13	Z	<u> </u>	4	- 0		-	-			- 4
CPAMW02	PS04	2006 1st Quarter	PSMW4-0306	3/23/2006	19.57	388.63	1,600	30,000	1,200	370	8,400	9,970	4.75										
CPAMW02	PS04	2006 2nd Quarter	PSMW4-0606	6/28/2006	16.53	391.67	2,200	32,000	710	350	6,400	7,460	4.7										
CPAMW02	PS04	2006 3rd Quarter	PSMW4-0806	8/30/2006	19.18	389.02	2,200	38,000	750	5	8,600	9,350	4.7										
CPAMW02	PS04	2006 4th Quarter	PSMW4-1106	11/28/2006	20.39	387.81	1,500	28,000	440	260	5,700	6,400	25.5										
CPAMW02	PS04	2007 1st Quarter	PSMW4-0207	2/27/2007	19.11	389.09	1,700	18,000	550	100	3,600	4,150	5										
CPAMW02	PS04	2007 2nd Quarter	PSMW4-0507	5/30/2007	11.63	396.57	7,400	33,000	100	100	2,900	2,900	4.85										
CPAMW02	PS04	2007 3rd Quarter	PSMW04-0907	9/25/2007	13.93	394.27	1,300	18,000	300	100	4,000	4,300	50										
CPAMW02	PS04	2007 4th Quarter	PSMW04-1207	12/17/2007	16.59	391.61	14,000	27,000	910	320	7,700	8,930	4.7										
CPAMW02	PS04	2008 1st Quarter	PSMW04-0308	3/24/2008	14.98	393.22	1,800	26,000	310	100	3,400	3,710	4.7										
CPAMW02	PS04	2008 2nd Quarter	PSMW04-0608	6/16/2008	5.82	402.38	730	31,000	125	125	6,600	6,600	5		-3/23/11								
CPAMW02	PS04	2008 3rd Quarter		8/26/2008	8.28	399.92	3,200	33,000	500	270	9,100	9,870		0.025	2.5	640	18	7,400	6.46	-105.6	5.8	5.5	0.3
CPAMW02	PS04	2008 4th Quarter		11/20/2008	12.54	395.66	2,000	33,000	2,400	640	14,000	17,040		0.025	2.5	620	40	1,400	6.92	104.8	5.3	5.1	0.2
CPAMW02	PS04	2009 1st Quarter		3/2/2009	14.07	394.13	820	31,000	3,000	720	17,000	20,720	4.85	0.025	2.5	610	25	2,800	13.43	-144	6.1	5.2	0.9
CPAMW02	PS04	2009 2nd Quarter		6/8/2009	6.87	401.33	320	37,000	420	350	11,000	11,770		0.025	2.5	630	35	7,200	1.66	-50.7	4.9	4.8	0.1
CPAMW02	PS04	2009 3rd Quarter		8/20/2009	14.11	394.09	1,100	30000	2,100	600	15,000	17,700	4.7	0.025	2.5	630	13.5	2800	4.39	-111	5.9	5.3	0.6
CPAMW02	PS04	2009 4th Quarter		11/18/2009	8.26	399.94	710	26000	1,800	500	13,000	15,300	NA	0.025	2.5	530	36	2600	1.75	-125.6	6.1	5.7	0.4
CPAMW02	PS04	2010 1st Quarter	Art 141142 - 174 -	2/17/2010	12.01	396.19	1,100	29,000	2,700	670	16,000	19,370	4.85	0.025	2.5	610	36	2200	0.19	-122.9	6.1	6.0	0.1
CPAMW02-DUP	PS04-DUP	2006 1st Quarter	PSMW4-0306-AD	3/23/2006	19.57	388.63	1,500	27,000	1,400	360	8,100	9,860	4.8										
CPAMW03	PS07	2006 1st Quarter	PSMW7-0306	3/20/2006	22.84	387.83	11,000	1,400	97	26	550	673	4.7										
CPAMW03	PS07	2006 2nd Quarter	PSMW7-0606	6/26/2006	18.98	391.69	580	320	2.5	2.5	2.5	8	4.7	0.025	2.5	710	100	17,000	0.75	-81.3			
CPAMW03	PS07	2006 3rd Quarter	PSMW7-0906	9/8/2006	22.81	387.86	500	520	2.5	2.5	2.5	8	4.7	0.025	2.5	700	160	20,000	0.52	-136.7			
CPAMW03	PS07	2006 4th Quarter	PSMW7-1106	11/27/2006	28.92	381.75	3,500	680	25	25	25	75	5	0.025	2.5	930	43	19,000	0.61	-106.5		-	
CPAMW03	PS07	2007 1st Quarter	PSMW7-0207	2/22/2007	27.37	383.30	240	370	2.5	2.5	2.5	8	4.8	0.083	12.5	710	36	16,000	0.31	-80.6			
CPAMW03	PS07	2007 2nd Quarter	PSMW7-0507	5/24/2007	17.25	393.42	55	310	12	3	12	24	4.7	0.025	2.5	730	51	9,100	0.81	-133.9	14.0	14.0	0.0
CPAMW03	PS07	2007 3rd Quarter	PSMW07-0907	9/20/2007	20.78	389.89	38	480	3	3	3	0	4.7	0.025	2.5	720	52	17,000	0.21	-102.3	16.0	16.0	0.0
CPAMW03	PS07	2007 4th Quarter	PSMW07-1207	12/12/2007	24.68	385.99	26	420	6	3	8	14	4.7	0.025	25	720	37	17,000	0.89	-20.2	13.0	15.0	0.0
CPAMW03	PS07	2008 1st Quarter	PSMW07-0308	3/19/2008	21.55	389.12	25	430	3	3	3	8	4.7	0.025	2.5	700	71	17,000	1.8	16.3	15.0	15.0	0.0
CPAMW03	PS07	2008 2nd Quarter	PSMW07-0608	6/17/2008	5.27	405.40	24	490	7	3	12	19	4.85	0.025	2.5	720	77	21,000	0.34	-138	17.0	16.0	1.0
CPAMW03	PS07	2008 3rd Quarter		8/21/2008	10.80	399.87	25	460	4	2	6	11		0.025	12.5	690	48	8,800	0.29	1.9	18.0	18.0	0.0
CPAMW03	PS07	2008 4th Quarter		11/24/2008	15.44	395.23	53	420	13	1	16	30		0.025	2.5	690	56	33,000	6.09	-87	15.0	15.0	0.0
CPAMW03	PS07	2009 1st Quarter		2/26/2009	16.75	393.92	86	460	11	3	16	27	4.7	0.025	2.5	690	49	30,000	6.15	-150.8	13.0	14.0	0.0
CPAMW03	PS07	2009 2nd Quarter		6/3/2009	7.35	403.32	27	500	6	3	9	17		0.025	0.025	710	59	31,000	0.56	-104.5	15.0	15.0	0.0
CPAMW03	PS07	2009 3rd Quarter		8/19/2009	14.64	396.03	44	510	12	11	17	30	4.7	0.025	2.5	690	28	32000	3.66	-137.2	14.0	14.0	0.0
CPAMW03	PS08	2009 4th Quarter		11/17/2009	9.59	401.08	3	520	13	2.5	20	33		0.025	2.5	640	79	36000	1.57	-131.4	16.0	16.0	0.0
CPAMW03	PS09	2010 1st Quarter		2/18/2010	12.01	398.66	180	660	37	5	64	106	5	0.025	2.5	660	63	26000	0.09	-137.9	15.0	14.0	1.0

Attachment B

Mann-Kendall Analysis of MNA Data 3Q08 through 2Q10 Monitoring Well BSA-MW-1

State of Wisconsin

Department of Natural Resources

Mann-Kendall Statistical Test Form 4400-215 (2/2001)

Remediation and Redevelopment Program

Revised to Evaluate Trend at ≥ 95% Confidence Level

Notice: This form is the DNR supplied spreadsheet referenced in Appendices A of Comm 46 and NR 746, Wis. Adm. Code. It is provided to consultants as an optional tool for groundwater contaminant trend analysis to support site closure requests under s. Comm 46.07, Comm 46.08, NR 746.07, NR 746.08, Wis. Adm. Code. Use this form or a manual method when seeking case closure under those rules. Earlier versions of this form should not be used.

Site Name =	Solutia WGK Site			BRRTS No. =		Well Number =	BSAMW01
	Compound ->	Benzene	Mono- chlorobenzene	1,2-DCB	1,3-DCB	1,4-DCB	Total DCB
		Concentration	Concentration	Concentration	Concentration	Concentration	Concentration
Event	Sampling Date	(blank if no data;	(blank if no data;	(blank if no data;	(blank if no data;	(blank if no data;	(blank if no data;
Number	(most recent last)	Red if ND used)	Red if ND used)	Red if ND used)	Red if ND used)	Red if ND used)	Red if ND used)
1	26-Aug-08	1,000,000					F 15 20
2	20-Nov-08	1,200,000			San Henry Paris	24 153 111	
3	2-Mar-09	830,000					
4	19-Aug-09	940,000					
5	18-Feb-10	730,000					
6							
7				1 3		177	
8							
9							
10							
	Mann Kendall Statistic (S) =	-6.0	0.0	0.0	0.0	0.0	0.0
	Number of Rounds (n) =	5	0	0	0	0	0
	Average =	940000.00	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	Standard Deviation =	178465.683	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	Coefficient of Variation(CV)=	0.190	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Error Check,	Blank if No Errors Detected		n<4	n<4	n<4	n<4	n<4
Trend ≥ 80%	Confidence Level	DECREASING	n<4	n<4	n<4	n<4	n<4
Trend ≥ 90%	Confidence Level	No Trend	n<4	n<4	n<4	n<4	n<4
Trend ≥ 95%	Confidence Level	No Trend	n<4	n<4	n<4	n<4	n<4
Stability Test	, If No Trend Exists at		n<4	n<4	n<4	n<4	n<4
80% Confid	ence Level	NA	n<4	n<4	n<4	n<4	n<4
	Data Entry By =	PWS	Date =	16-Jul-10	Checked By =	WAN	

Mann-Kendall Analysis of MNA Data 3Q08 through 2Q10 Monitoring Well BSA-MW-2

State of Wisconsin

Department of Natural Resources

Mann-Kendall Statistical Test Form 4400-215 (2/2001)

Remediation and Redevelopment Program

Revised to Evaluate Trend at ≥ 95% Confidence Level

Notice: This form is the DNR supplied spreadsheet referenced in Appendices A of Comm 46 and NR 746, Wis. Adm. Code. It is provided to consultants as an optional tool for groundwater contaminant trend analysis to support site closure requests under s. Comm 46.07, Comm 46.08, NR 746.07, NR 746.08, Wis. Adm. Code. Use this form or a manual method when seeking case closure under those rules. Earlier versions of this form should not be used.

Site Name =	Solutia WGK Site			BRRTS No. =		Well Number =	BSAMW02
	Compound -	Benzene	Mono- chlorobenzene	1,2-DCB	1,3-DCB	1,4-DCB	Total DCB
	to the first beautiful being the format	Concentration	Concentration	Concentration	Concentration	Concentration	Concentration
Event	Sampling Date		(blank if no data;	(blank if no data;	(blank if no data;	(blank if no data;	(blank if no data;
Number	(most recent last) Red if ND used)	Red if ND used)	Red if ND used)	Red if ND used)	Red if ND used)	Red if ND used)
1	21-Aug-08		1,700				
2	24-Nov-08						
3	26-Feb-09		2,900				
4	19-Aug-09	7,200					
5	17-Feb-10	150,000	2,700				
6							
7							
8					- A-1		
9							
10		The second second			Type Control of the C		
	Mann Kendall Statistic (S) :	= 2.0	6.0	0.0	0.0	0.0	0.0
	Number of Rounds (n) =	5	5	0	0	0	0
	Average :	42240.00	2960.00	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	Standard Deviation :	60437.472	1228.007	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	Coefficient of Variation(CV)=	1.431	0.415	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Error Check,	Blank if No Errors Detected	1207(1201)	第25年11月2	n<4	n<4	n<4	n<4
Trend ≥ 80%	Confidence Level	No Trend	INCREASING	n<4	n<4	n<4	n<4
Trend ≥ 90%	Confidence Level	No Trend		n<4	n<4	n<4	n<4
Trend ≥ 95%	Confidence Level	No Trend	No Trend	n<4	n<4	n<4	n<4
Stability Test	, If No Trend Exists at	CV > 1		n<4	n<4	n<4	n<4
80% Confide	ence Level	NON-STABLE	NA	n<4	n<4	n<4	n<4
	Data Entry By =	PWS	Date =	16-Jul-10	Checked By =	WAN	

Mann-Kendall Analysis of MNA Data 3Q08 through 2Q10 Monitoring Well BSA-MW-3

State of Wisconsin

Department of Natural Resources

Mann-Kendall Statistical Test Form 4400-215 (2/2001)

Remediation and Redevelopment Program

Revised to Evaluate Trend at ≥ 95% Confidence Level

Notice: This form is the DNR supplied spreadsheet referenced in Appendices A of Comm 46 and NR 746, Wis. Adm. Code. It is provided to consultants as an optional tool for groundwater contaminant trend analysis to support site closure requests under s. Comm 46.07, Comm 46.08, NR 746.07, NR 746.08, Wis. Adm. Code. Use this form or a manual method when seeking case closure under those rules. Earlier versions of this form should not be used.

Site Name =	Solutia WGK Site			BRRTS No. =	第二人员	Well Number =	BSAMW03
	Compound ->	Benzene	Mono- chlorobenzene	1,2-DCB	1,3-DCB	1,4-DCB	Total DCB
		Concentration	Concentration	Concentration	Concentration	Concentration	Concentration
Event	Sampling Date	(blank if no data;	(blank if no data;	(blank if no data;	(blank if no data;	(blank if no data;	(blank if no data;
Number	(most recent last)	Red if ND used)	Red if ND used)	Red if ND used)	Red if ND used)	Red if ND used)	Red if ND used)
1	25-Aug-08	30	1,500	14	3,400		3,444
2	21-Nov-08	97	1,300	22	440	97	559
3	2-Mar-09	120	1,200	14	370	120	504
4	19-Aug-09	68	1,100	32	20	330	382
5	16-Feb-10	87	1,200	46	20	430	496
6							
7						2.0	
8							
9							
10	Marie Control of the						
	Mann Kendall Statistic (S) =	2.0	-7.0	7.0	-9.0	10.0	-8.0
	Number of Rounds (n) =	5	5	5	5	5	5
	Average =	80.40	1260.00	25.60	850.00	201.40	1077.00
	Standard Deviation =	33.842	151.658	13.594	1438.645	170.073	1324.757
	Coefficient of Variation(CV)=	0.421	0.120	0.531	1.693	0.844	1.230
Error Check,	Blank if No Errors Detected	《安阳》	对。有一种人类的特色			And the management	
Trend ≥ 80%	Confidence Level	No Trend	DECREASING	INCREASING	DECREASING	INCREASING	DECREASING
	Confidence Level	No Trend	DECREASING	INCREASING	DECREASING		DECREASING
	Confidence Level	No Trend	No Trend	No Trend	DECREASING	INCREASING	DECREASING
Stability Test	If No Trend Exists at	CV <= 1				Service Control	
80% Confid		STABLE	NA	NA	NA	NA	NA
	Data Entry By =	PWS	Date =	16-Jul-10	Checked By =	WAN	

Mann-Kendall Analysis of MNA Data 3Q08 through 2Q10 Monitoring Well BSA-MW-4

State of Wisconsin

Department of Natural Resources

Mann-Kendall Statistical Test Form 4400-215 (2/2001)

Remediation and Redevelopment Program

Revised to Evaluate Trend at ≥ 95% Confidence Level

Notice: This form is the DNR supplied spreadsheet referenced in Appendices A of Comm 46 and NR 746, Wis. Adm. Code. It is provided to consultants as an optional tool for groundwater contaminant trend analysis to support site closure requests under s. Comm 46.07, Comm 46.08, NR 746.07, NR 746.08, Wis. Adm. Code. Use this form or a manual method when seeking case closure under those rules. Earlier versions of this form should not be used.

Instructions: Do not change formulas or other information in cells with a blue background, only cells with a yellow background are used for data entry. To use the spreadsheet, provide at least four rounds and not more than ten rounds of data that is not seasonally affected. Use consistent units. The spreadsheet contains several error checks, and a data entry error may cause "DATA ERR" or "DATE ERR" to be displayed. Dates that are not consecutive will show an error message and will not display the test results. The spreadsheet tests the data for both increasing and decreasing trends at both 80 percent and 90 percent confidence levels. If a declining trend is present at 80 percent but not at 90 percent, a site is still eligible for closure under Comm 46 and NR 746 provided that other conditions in those rules are met. If an increasing or decreasing trend is not present, an additional coefficient of variation test is used to test for stability, as proposed by Wiedemeier et al., 1999. For additional information, refer to the Interim Guidance on Natural Attenuation for Petroleum Releases, dated October 1999. Refer to the guidance for recommendations on data entry for non-detect values.

Site Name =	Solutia WGK Site			BRRTS No. =		Well Number =	BSAMW04
	Compound ->	Benzene	Mono- chlorobenzene	1,2-DCB	1,3-DCB	1,4-DCB	Total DCB
		Concentration	Concentration	Concentration	Concentration	Concentration	Concentration
Event	Sampling Date	(blank if no data;	(blank if no data;	(blank if no data;	(blank if no data;	(blank if no data;	(blank if no data;
Number	(most recent last)	Red if ND used)	Red if ND used)	Red if ND used)	Red if ND used)	Red if ND used)	Red if ND used)
1	25-Aug-08	48	2,600	13	20	49	67
2	20-Nov-08	590	2,300	37	20	73	130
3	25-Feb-09	82	2,300	26	20	64	110
4	18-Aug-09	99	2,700	20	26	61	107
5	16-Feb-10	73	2,700	22	20	68	110
6							
7							
8							
9							
10							
	Mann Kendall Statistic (S) =	0.0	4.0	0.0	2.0	2.0	1.0
	Number of Rounds (n) =	5	5	5	5	5	5
	Average =	178.40	2520.00	23.60	21.20	63.00	104.80
	Standard Deviation =	230.827	204.939	8.849	2.683	9.028	23.037
	Coefficient of Variation(CV)=	1.294	0.081	0.375	0.127	0.143	0.220
Error Check,	Blank if No Errors Detected		E TOTAL SE			25年2月2日 6月2万日	
Trend ≥ 80%	Confidence Level	No Trend	No Trend	No Trend	No Trend	No Trend	No Trend
	Confidence Level	No Trend	No Trend	No Trend	No Trend	No Trend	No Trend
Trend ≥ 95%	Confidence Level	No Trend	No Trend	No Trend	No Trend	No Trend	No Trend
Stability Test	If No Trend Exists at	CV > 1	CV <= 1	CV <= 1	CV <= 1	CV <= 1	CV <= 1
80% Confide		NON-STABLE	STABLE	STABLE	STABLE	STABLE	STABLE
	Data Entry By =	PWS	Date =	16-Jul-10	Checked By =	WAN	

W. G. Krummrich Facility Long-Term Monitoring Program 2010 MNA Evaluation

Mann-Kendall Analysis of MNA Data 3Q08 through 2Q10 Monitoring Well BSA-MW-5

State of Wisconsin

Department of Natural Resources

Mann-Kendall Statistical Test Form 4400-215 (2/2001)

Remediation and Redevelopment Program

Revised to Evaluate Trend at ≥ 95% Confidence Level

Notice: This form is the DNR supplied spreadsheet referenced in Appendices A of Comm 46 and NR 746, Wis. Adm. Code. It is provided to consultants as an optional tool for groundwater contaminant trend analysis to support site closure requests under s. Comm 46.07, Comm 46.08, NR 746.07, NR 746.08, Wis. Adm. Code. Use this form or a manual method when seeking case closure under those rules. Earlier versions of this form should not be used.

Site Name =	Solutia WGK Site			BRRTS No. =		Well Number =	BSAMW05
	Compound ->	Benzene	Mono- chlorobenzene	1,2-DCB	1,3-DCB	1,4-DCB	Total DCB
		Concentration	Concentration	Concentration	Concentration	Concentration	Concentration
Event	Sampling Date	(blank if no data;	(blank if no data;	(blank if no data;	(blank if no data;	(blank if no data;	(blank if no data;
Number	(most recent last)	Red if ND used)	Red if ND used)	Red if ND used)	Red if ND used)	Red if ND used)	Red if ND used)
1	20-Aug-08	18	300	4	4	5	13
2	21-Nov-08	130	310	19	4	20	43
3	26-Aug-09	13	330	10	4	13	27
4	15-Feb-10	5	350	190	16	140	346
5					1 1 1 1 1 1 1 1 1 1 1		
6							
7							
8							
9	E Company			Control a Ch			
10	10000000000000000000000000000000000000						
	Mann Kendall Statistic (S) =	-4.0	6.0	4.0	3.0	4.0	4.0
	Number of Rounds (n) =	4	4	4	4	4	4
	Average =	41.50	322.50	55.75	7.00	44.53	107.28
	Standard Deviation =	59.242	22.174	89.712	6.000	63.940	159.618
	Coefficient of Variation(CV)=	1.428	0.069	1.609	0.857	1.436	1.488
Error Check,	Blank if No Errors Detected	September 1992					
Trend ≥ 80%	6 Confidence Level	DECREASING	INCREASING	INCREASING	No Trend	INCREASING	INCREASING
Trend ≥ 90%	6 Confidence Level	No Trend	INCREASING	No Trend	No Trend	No Trend	No Trend
Trend ≥ 95%	6 Confidence Level	No Trend	INCREASING	No Trend	No Trend	No Trend	No Trend
Stability Test	, If No Trend Exists at				CV <= 1		
80% Confid		NA	NA	NA	STABLE	NA	NA
	Data Entry By =	PWS	Date =	16-Jul-10	Checked By =	WAN	

Mann-Kendall Analysis of MNA Data 3Q08 through 2Q10 Monitoring Well CPA-MW-1

State of Wisconsin

Department of Natural Resources

Mann-Kendall Statistical Test Form 4400-215 (2/2001)

Remediation and Redevelopment Program

Revised to Evaluate Trend at ≥ 95% Confidence Level

Notice: This form is the DNR supplied spreadsheet referenced in Appendices A of Comm 46 and NR 746, Wis. Adm. Code. It is provided to consultants as an optional tool for groundwater contaminant trend analysis to support site closure requests under s. Comm 46.07, Comm 46.08, NR 746.07, NR 746.08, Wis. Adm. Code. Use this form or a manual method when seeking case closure under those rules. Earlier versions of this form should not be used.

Concentration Concentrati	Site Name =	Solutia WGK Site			BRRTS No. =		Well Number =	CPAMW01
Event Sampling Date (blank if no data; Red if ND used)		Compound ->	Benzene	Dec. House of the second secon	1,2-DCB	1,3-DCB		Total DCB
Number (most recent last) Red if ND used)			Concentration	Concentration	Concentration	Concentration	Concentration	Concentration
1 26-Aug-08 3,100 15,000 22,000 1,400 12,000 35, 2 20-Nov-08 3,200 13,000 22,000 1,400 12,000 35, 3 2-Mar-09 4,200 16,000 20,000 1,400 12,000 33, 4 20-Aug-09 5,000 16,000 18,000 1,200 11,000 30, 5 17-Feb-10 7,300 18,000 22,000 1,700 14,000 37, 6 7 8 9 10 Mann Kendall Statistic (S) = 10.0 7.0 -3.0 1.0 1.0 1.0 Number of Rounds (n) = 5 5 5 5 5 5 5 5 5 5 5 5 5	Event	Sampling Date	(blank if no data;	(blank if no data;	(blank if no data;	(blank if no data;	(blank if no data;	(blank if no data;
2	Number	The state of the s	The second secon		the state of the s			Red if ND used)
3 2-Mar-09 4,200 16,000 20,000 1,400 12,000 33, 4 20-Aug-09 5,000 16,000 18,000 1,200 11,000 30, 5 17-Feb-10 7,300 18,000 22,000 1,700 14,000 37, 6 7 8 9 10	1							35,400
4 20-Aug-09 5,000 16,000 18,000 1,200 11,000 30, 5 17-Feb-10 7,300 18,000 22,000 1,700 14,000 37, 6			The second secon	ACCURATION AND ACCURA				35,400
5 17-Feb-10 7,300 18,000 22,000 1,700 14,000 37, 6 7 8 9 10		2-Mar-09						33,400
6 7 8 9 10 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1								30,200
Trend ≥ 80% Confidence Level INCREASING No Trend		17-Feb-10	7,300	18,000	22,000	1,700	14,000	37,700
8 9 10 Mann Kendall Statistic (S) = 10.0 7.0 -3.0 1.0 1.0 Number of Rounds (n) = 5 5 5 5 Average = 4560.00 15600.00 20800.00 1420.00 12200.00 34420 Standard Deviation = 1718.430 1816.590 1788.854 178.885 1095.445 2807. Coefficient of Variation(CV) = 0.377 0.116 0.086 0.126 0.090 0. Error Check, Blank if No Errors Detected Trend ≥ 80% Confidence Level INCREASING INCREASING No Trend No Tren				72				
9 10 Mann Kendall Statistic (S) = 10.0 7.0 -3.0 1.0 1.0 1.0	CONTRACTOR DESIGNATION OF THE PARTY OF THE P							
Mann Kendall Statistic (S) = 10.0 7.0 -3.0 1.0 1.0 1.0 Number of Rounds (n) = 5 5 5 5 Average = 4560.00 15600.00 20800.00 1420.00 12200.00 34420 Standard Deviation = 1718.430 1816.590 1788.854 178.885 1095.445 2807. Coefficient of Variation(CV) = 0.377 0.116 0.086 0.126 0.090 0. Error Check, Blank if No Errors Detected INCREASING INCREASING No Trend No Tr		7 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5						
Mann Kendall Statistic (S) = 10.0 7.0 -3.0 1.0 1.0 1.0 Number of Rounds (n) = 5 5 5 5 5 Average = 4560.00 15600.00 20800.00 1420.00 12200.00 34420 Standard Deviation = 1718.430 1816.590 1788.854 178.885 1095.445 2807. Coefficient of Variation(CV)= 0.377 0.116 0.086 0.126 0.090 0. Error Check, Blank if No Errors Detected Trend ≥ 80% Confidence Level INCREASING INCREASING No Trend No Trend No Trend No Trend								
Number of Rounds (n) = 5 5 5 5 Average = 4560.00 15600.00 20800.00 1420.00 12200.00 34420 Standard Deviation = 1718.430 1816.590 1788.854 178.885 1095.445 2807. Coefficient of Variation(CV) = 0.377 0.116 0.086 0.126 0.090 0. Error Check, Blank if No Errors Detected Trend ≥ 80% Confidence Level INCREASING INCREASING No Trend No Trend No Trend No Trend No Trend	10	2000年2月28日 100日 100日						
Average = 4560.00 15600.00 20800.00 1420.00 12200.00 34420 Standard Deviation = 1718.430 1816.590 1788.854 178.885 1095.445 2807. Coefficient of Variation(CV)= 0.377 0.116 0.086 0.126 0.090 0. Error Check, Blank if No Errors Detected Trend ≥ 80% Confidence Level INCREASING INCREASING No Trend No Trend No Trend No Trend No Trend		Mann Kendall Statistic (S) =	10.0	7.0	-3.0	1.0	1.0	-1.0
Standard Deviation = 1718.430 1816.590 1788.854 178.885 1095.445 2807. Coefficient of Variation(CV)= 0.377 0.116 0.086 0.126 0.090 0. Error Check, Blank if No Errors Detected Trend ≥ 80% Confidence Level INCREASING INCREASING No Trend		Number of Rounds (n) =	5	A STATE OF THE PARTY OF T	THE RESIDENCE OF THE PARTY OF T	5	5	5
Coefficient of Variation(CV)= 0.377 0.116 0.086 0.126 0.090 0. Error Check, Blank if No Errors Detected Trend ≥ 80% Confidence Level INCREASING INCREASING No Trend No Trend No Trend No Trend No Trend								34420.00
Error Check, Blank if No Errors Detected Trend ≥ 80% Confidence Level INCREASING INCREASING No Trend No Tr			1718.430	1816.590	1788:854	178.885	1095.445	2807.490
Trend ≥ 80% Confidence Level INCREASING INCREASING No Trend No Trend No Trend No Trend		Coefficient of Variation(CV)=	0.377	0.116	0.086	0.126	0.090	0.082
	Error Check,	Blank if No Errors Detected						
Trend ≥ 90% Confidence Level INCREASING INCREASING No Trend No Trend No Trend No Trend	Trend ≥ 80%	Confidence Level	INCREASING	INCREASING	No Trend	No Trend	No Trend	No Trend
	Trend ≥ 90%	Confidence Level	INCREASING	INCREASING	No Trend	No Trend	No Trend	No Trend
Trend ≥ 95% Confidence Level INCREASING No Trend No Trend No Trend No Trend No Trend No Trend	Trend ≥ 95%	Confidence Level	INCREASING	No Trend	No Trend	No Trend	No Trend	No Trend
Stability Test, If No Trend Exists at CV <= 1 CV <= 1 CV <= 1 CV <= 1	Stability Test	, If No Trend Exists at			CV <= 1	CV <= 1	CV <= 1	CV <= 1
80% Confidence Level NA NA STABLE STABLE STABLE STABLE	80% Confid	ence Level	NA	NA	STABLE	STABLE	STABLE	STABLE
Data Entry By = PWS Date = 16-Jul-10 Checked By = WAN		Data Entry By =	PWS	Date =	16-Jul-10	Checked By =	WAN	

Mann-Kendall Analysis of MNA Data 3Q08 through 2Q10 Monitoring Well CPA-MW-2

State of Wisconsin

Department of Natural Resources

Mann-Kendall Statistical Test Form 4400-215 (2/2001)

Remediation and Redevelopment Program

Revised to Evaluate Trend at ≥ 95% Confidence Level

Notice: This form is the DNR supplied spreadsheet referenced in Appendices A of Comm 46 and NR 746, Wis. Adm. Code. It is provided to consultants as an optional tool for groundwater contaminant trend analysis to support site closure requests under s. Comm 46.07, Comm 46.08, NR 746.07, NR 746.08, Wis. Adm. Code. Use this form or a manual method when seeking case closure under those rules. Earlier versions of this form should not be used.

Instructions: Do not change formulas or other information in cells with a blue background, only cells with a yellow background are used for data entry. To use the spreadsheet, provide at least four rounds and not more than ten rounds of data that is not seasonally affected. Use consistent units. The spreadsheet contains several error checks, and a data entry error may cause "DATA ERR" or "DATE ERR" to be displayed. Dates that are not consecutive will show an error message and will not display the test results. The spreadsheet tests the data for both increasing and decreasing trends at both 80 percent and 90 percent confidence levels. If a declining trend is present at 80 percent but not at 90 percent, a site is still eligible for closure under Comm 46 and NR 746 provided that other conditions in those rules are met. If an increasing or decreasing trend is not present, an additional coefficient of variation test is used to test for stability, as proposed by Wiedemeier et al., 1999. For additional information, refer to the Interim Guidance on Natural Attenuation for Petroleum Releases, dated October 1999. Refer to the guidance for recommendations on data entry for non-detect values.

Site Name =	Solutia WGK Site			BRRTS No. =		Well Number =	CPAMW02
	Compound ->	Benzene	Mono- chlorobenzene	1,2-DCB	1,3-DCB	1,4-DCB	Total DCB
		Concentration	Concentration	Concentration	Concentration	Concentration	Concentration
Event	Sampling Date	(blank if no data;	(blank if no data;	(blank if no data;	(blank if no data;	(blank if no data;	(blank if no data;
Number	(most recent last)	Red if ND used)	Red if ND used)	Red if ND used)	Red if ND used)	Red if ND used)	Red if ND used)
1	26-Aug-08	3,200	33,000	500	270		9,870
2	20-Nov-08	2,000	33,000	2,400	640	14,000	17,040
3	2-Mar-09	820	31,000		720		20,720
4	20-Aug-09	1,100	30,000	2,100	600	15,000	17,700
5	17-Feb-10	1,100	29,000	2,700	670	16,000	19,370
6			HERE SERVICE	The state of the			
7							R
8							
9							
10			english to the same				
	Mann Kendall Statistic (S) =	-5.0	-9.0	4.0	4.0	6.0	6.0
	Number of Rounds (n) =	5	5	5	5	5	5
	Average =	1644.00	31200.00	2140.00	580.00		16940.00
	Standard Deviation =	977.077	1788.854	976.217	178.746	3072.784	4206.121
	Coefficient of Variation(CV)=	0.594	0.057	0.456	0.308	0.216	0.248
Error Check,	Blank if No Errors Detected			N. Els. The Little			
Trend ≥ 80%	6 Confidence Level	DECREASING	DECREASING	No Trend	No Trend	INCREASING	INCREASING
Trend ≥ 90%	6 Confidence Level	No Trend	DECREASING	No Trend	No Trend	No Trend	No Trend
Trend ≥ 95%	6 Confidence Level	No Trend	DECREASING		No Trend	No Trend	No Trend
Stability Test	, If No Trend Exists at			CV <= 1	CV <= 1		
80% Confid	ence Level	NA	NA	STABLE	STABLE	NA	NA
	Data Entry By =	PWS	Date =	16-Jul-10	Checked By =	WAN	

Mann-Kendall Analysis of MNA Data 3Q08 through 2Q10 Monitoring Well CPA-MW-3

State of Wisconsin

Department of Natural Resources

Mann-Kendall Statistical Test Form 4400-215 (2/2001)

Remediation and Redevelopment Program

Revised to Evaluate Trend at ≥ 95% Confidence Level

Notice: I his form is the DNR supplied spreadsheet referenced in Appendices A of Comm 46 and NR 746, Wis. Adm. Code. It is provided to consultants as an optional tool for groundwater contaminant trend analysis to support site closure requests under s. Comm 46.07, Comm 46.08, NR 746.07, NR 746.08, Wis. Adm. Code. Use this form or a manual method when seeking case closure under those rules. Earlier versions of this form should not be used.

Instructions: Do not change formulas or other information in cells with a blue background, only cells with a yellow background are used for data entry. To use the spreadsheet, provide at least four rounds and not more than ten rounds of data that is not seasonally affected. Use consistent units. The spreadsheet contains several error checks, and a data entry error may cause "DATA ERR" or "DATE ERR" to be displayed. Dates that are not consecutive will show an error message and will not display the test results. The spreadsheet tests the data for both increasing and decreasing trends at both 80 percent and 90 percent confidence levels. If a declining trend is present at 80 percent but not at 90 percent, a site is still eligible for closure under Comm 46 and NR 746 provided that other conditions in those rules are met. If an increasing or decreasing trend is not present, an additional coefficient of variation test is used to test for stability, as proposed by Wiedemeier et al, 1999. For additional information, refer to the Interim Guidance on Natural Attenuation for Petroleum Releases, dated October 1999. Refer to the guidance for recommendations on data entry for non-detect values.

Site Name =	Solutia WGK Site			BRRTS No. =		Well Number =	CPAMW03
	Compound ->	Benzene	Mono- chlorobenzene	1,2-DCB	1,3-DCB	1,4-DCB	Total DCB
1124		Concentration	Concentration	Concentration	Concentration	Concentration	Concentration
Event	Sampling Date	(blank if no data;	(blank if no data;	(blank if no data;	(blank if no data;	(blank if no data;	(blank if no data;
Number	(most recent last)	Red if ND used)	Red if ND used)	Red if ND used)	Red if ND used)	Red if ND used)	Red if ND used)
1	21-Aug-08	25	460	4	4	6	11
2	24-Nov-08	53	420	13	- 1	16	30
3	26-Feb-09	86	460	11	5	16	
4	19-Aug-09	44	510	10	1	17	28
5	18-Feb-10	180	660	37	5	64	106
6							
7				a de la constantina			
8		SER LEADY					
9							
10	是这一种的特别,但是一个有一种的。 第二章						
	Mann Kendall Statistic (S) =	6.0	7.0	4.0	1.0	9.0	6.0
	Number of Rounds (n) =	5	5	5	5	5	5
	Average =	77.60	502.00	15.04	3.22	23.88	41.34
	Standard Deviation =	61.354	93.915	12.705	2.023	22.840	37.140
	Coefficient of Variation(CV)=	0.791	0.187	0.845	0.628	0.956	0.898
Error Check,	Blank if No Errors Detected						
Trend ≥ 80%	Confidence Level	INCREASING	INCREASING	No Trend	No Trend	INCREASING	INCREASING
	Confidence Level	No Trend	INCREASING	No Trend	No Trend	INCREASING	No Trend
Trend ≥ 95%	Confidence Level	No Trend	No Trend	No Trend	No Trend	INCREASING	No Trend
Stability Test	, If No Trend Exists at			CV <= 1	CV <= 1		
80% Confid		NA	NA	STABLE	STABLE	NA	NA
	Data Entry By =	PWS	Date =	16-Jul-10	Checked By =	WAN	

Mann-Kendall Analysis of MNA Data 3Q08 through 2Q10 Monitoring Well CPA-MW-4

State of Wisconsin

Department of Natural Resources

Mann-Kendall Statistical Test Form 4400-215 (2/2001)

Remediation and Redevelopment Program

Revised to Evaluate Trend at ≥ 95% Confidence Level

Notice: I his form is the DNR supplied spreadsheet referenced in Appendices A of Comm 46 and NR 746, Wis. Adm. Code. It is provided to consultants as an optional tool for groundwater contaminant trend analysis to support site closure requests under s. Comm 46.07, Comm 46.08, NR 746.07, NR 746.08, Wis. Adm. Code. Use this form or a manual method when seeking case closure under those rules. Earlier versions of this form should not be used.

Instructions: Do not change formulas or other information in cells with a blue background, only cells with a yellow background are used for data entry. To use the spreadsheet, provide at least four rounds and not more than ten rounds of data that is not seasonally affected. Use consistent units. The spreadsheet contains several error checks, and a data entry error may cause "DATA ERR" or "DATE ERR" to be displayed. Dates that are not consecutive will show an error message and will not display the test results. The spreadsheet tests the data for both increasing and decreasing trends at both 80 percent and 90 percent confidence levels. If a declining trend is present at 80 percent but not at 90 percent, a site is still eligible for closure under Comm 46 and NR 746 provided that other conditions in those rules are met. If an increasing or decreasing trend is not present, an additional coefficient of variation test is used to test for stability, as proposed by Wiedemeier et al, 1999. For additional information, refer to the Interim Guidance on Natural Attenuation for Petroleum Releases, dated October 1999. Refer to the guidance for recommendations on data entry for non-detect values.

Site Name =	Solutia WGK Site	11年 医皮肤		BRRTS No. =		Well Number =	CPAMW04	
	Compound ->	Benzene	Mono- chlorobenzene	1,2-DCB	1,3-DCB	1,4-DCB	Total DCB	
		Concentration	Concentration	Concentration	Concentration	Concentration	Concentration	
Event	Sampling Date	(blank if no data;	(blank if no data;	(blank if no data;	(blank if no data;	(blank if no data;	(blank if no data;	
Number	(most recent last)	Red if ND used)	Red if ND used)	Red if ND used)	Red if ND used)	Red if ND used)	Red if ND used)	
1	25-Aug-08	610	870	4	10	6	10	
2	21-Nov-08	810	220	18	10	21	49	
3	25-Feb-09	30	1,100	15	10	18		
4	18-Aug-09	12	1,100	14	10	19	43	
5	15-Feb-10	37	800	23	10	35	68	
6								
7								
8								
9								
10								
	Mann Kendall Statistic (S) =	-4.0	1.0	4.0	0.0	6.0	5.0	
	Number of Rounds (n) =	5	5	5	5	5	5	
	Average =	299.80	818.00	14.88	10.00	19.78	42.66	
	Standard Deviation =	381.187	360.444	6.824	0.000	10.363	20.795	
	Coefficient of Variation(CV)=	1.271	0.441	0.459	0.000	0.524	0.487	
Error Check,	Blank if No Errors Detected		只要大概	24119-120-147-127	建筑建筑的			
Trend ≥ 80%	Confidence Level	No Trend	No Trend	No Trend	No Trend	INCREASING	INCREASING	
Trend ≥ 90%	Confidence Level	No Trend	No Trend	No Trend	No Trend	No Trend	No Trend	
Trend ≥ 95%	Confidence Level	No Trend	No Trend	No Trend	No Trend	No Trend	No Trend	
Stability Test	, If No Trend Exists at	CV > 1	CV <= 1	CV <= 1	CV <= 1			
80% Confide		NON-STABLE	STABLE	STABLE	STABLE	NA	NA	
	Data Entry By =	PWS	Date =	16-Jul-10	Checked By =	Checked By = WAN		

W. G. Krummrich Facility Long-Term Monitoring Program 2010 MNA Evaluation

Mann-Kendall Analysis of MNA Data 3Q08 through 2Q10 Monitoring Well CPA-MW-5

State of Wisconsin

Department of Natural Resources

Mann-Kendall Statistical Test Form 4400-215 (2/2001)

Remediation and Redevelopment Program

Revised to Evaluate Trend at ≥ 95% Confidence Level

Notice: This form is the DNR supplied spreadsheet referenced in Appendices A of Comm 46 and NR 746, Wis. Adm. Code. It is provided to consultants as an optional tool for groundwater contaminant trend analysis to support site closure requests under s. Comm 46.07, Comm 46.08, NR 746.07, NR 746.08, Wis. Adm. Code. Use this form or a manual method when seeking case closure under those rules. Earlier versions of this form should not be used.

Instructions: Do not change formulas or other information in cells with a blue background, only cells with a yellow background are used for data entry. To use the spreadsheet, provide at least four rounds and not more than ten rounds of data that is not seasonally affected. Use consistent units. The spreadsheet contains several error checks, and a data entry error may cause "DATA ERR" or "DATE ERR" to be displayed. Dates that are not consecutive will show an error message and will not display the test results. The spreadsheet tests the data for both increasing and decreasing trends at both 80 percent and 90 percent confidence levels. If a declining trend is present at 80 percent but not at 90 percent, a site is still eligible for closure under Comm 46 and NR 746 provided that other conditions in those rules are met. If an increasing or decreasing trend is not present, an additional coefficient of variation test is used to test for stability, as proposed by Wiedemeier et al, 1999. For additional information, refer to the Interim Guidance on Natural Attenuation for Petroleum Releases, dated October 1999. Refer to the guidance for recommendations on data entry for non-detect values.

Site Name = 3	Solutia WGK Site	1. 电元素表示	THE RESERVE	BRRTS No. =		Well Number =	CPAMW05	
	Compound -	Benzene	Mono- chlorobenzene	1,2-DCB	1,3-DCB	1,4-DCB	Total DCB	
		Concentration	Concentration	Concentration	Concentration	Concentration	Concentration	
Event	Sampling Date		(blank if no data;	(blank if no data;	(blank if no data;	(blank if no data;	(blank if no data;	
Number	(most recent last		Red if ND used)	Red if ND used)	Red if ND/2 used)	Red if ND used)	Red if ND used)	
1	26-Aug-08	5	850	6	10	5	21	
2	24-Nov-08	3 15	1,400		10		30	
3	26-Aug-09		- 1	10	10	13	33	
4	16-Feb-10	10	1,700	130	11	100	241	
5	and the second second second				4	BEAT TO THE		
6								
7								
8								
9					the state of the			
10								
	Mann Kendall Statistic (S) =	1.0	6.0	5.0	3.0	6.0	6.0	
	Number of Rounds (n) =	4	4	4	4	4	4	
	Average =	10.00	1362.50	39.03	10.25	32.05	81.33	
	Standard Deviation =	4.082	363.719	60.678	0.500	45.414	106.566	
	Coefficient of Variation(CV)=	0.408	0.267	1.555	0.049	1.417	1.310	
Error Check,	Blank if No Errors Detected		对于是多位 是	1.美国共和国的特				
Trend ≥ 80%	Confidence Level	No Trend	INCREASING	INCREASING	No Trend	INCREASING	INCREASING	
Trend ≥ 90%	Confidence Level	No Trend	INCREASING	No Trend	No Trend	INCREASING	INCREASING	
Trend ≥ 95%	Confidence Level	No Trend	INCREASING		No Trend	INCREASING	INCREASING	
Stability Test,	If No Trend Exists at	CV <= 1			CV <= 1			
80% Confide		STABLE		NA	STABLE	NA	NA	
	Data Entry By =	PWS	Date =	16-Jul-10	Checked By =	WAN		

Attachment C

Evaluation of MNA Data 3Q08 through 2Q10 Trends by Quarter and over Distance

Location	Point ID	Quarterly Effort	Sample Date	Water Level (Elev, ft.)	Distance (feet)	Benzene (ug/L)	Monochlorobenzene (ug/L)	1,2-Dichlorobenzene (ug/L)	1,3-Dichlorobenzene (ug/L)	1,4-Dichlorobenzene (ug/L)	Total Dichlorobenzene (ug/L)	1,2,4-Trichlorobenzene (ug/L)
			7			100	700					
BSA-MW-1	PS05	2008 3rd Quarter	8/26/2008	11.62	0	1,000,000	2,500	2,500	2,500	2,500	7,500	
BSA-MW-2	PS08	2008 3rd Quarter	8/21/2008	15.10	1,060	18,000	1,700	100	100	100	300	
					Reduction Rate (m)	0.00012	1/cm				-	
					COI Vel. (v _c)	0.00006	cm/sec					
					Degradation Rate (k)	0.0007	1/day					
CDA MAA 4	Dena	2000 254 0	0/06/0000	7.45	0	2.400	45.000	20.000	4.400	40.000	25.400	
CPA-MW-1 CPA-MW-2	PS03 PS04	2008 3rd Quarter 2008 3rd Quarter	8/26/2008 8/26/2008	7.45 8.28	0 840	3,100	15,000	22,000	1,400	12,000	35,400	
CPA-MW-3	PS04 PS07	2008 3rd Quarter	8/26/2008	10.80	2215	3,200 25	33,000 460	500 4	270 2	9,100	9,870 13	
CPA-MW-4	PS11	2008 3rd Quarter	8/25/2008	25.37	3,660	610	870	4	1	6	11	
CI A-WW-4	7311	2000 Sid Quarter	6/25/2006	20.01	Reduction Rate (m)	0.00003	0.00004	0.00008	0.00007	0.00008	1/cm	
					COI Vel. (v _c)	0.00006	0.00004	0.00002	0.00007	0.00002	cm/sec	
					Degradation Rate (k)	0.0000	0.00003	0.00002	0.00002	0.00002	1/day	
	THE RESERVE		Charles and the same of		Degradation Rate (k)	0.0001	0.0001	0.0001	0.0001	0.0001	1/uay	
BSA-MW-1	PS05	2008 4th Quarter	11/20/2008	16.00	0	1,200,000	5,000	5,000	5,000	5,000	15,000	
BSA-MW-2	PS08	2008 4th Quarter	11/24/2008	20.31	1,060	16,000	2,500	100	100	100	300	
					Reduction Rate (m)	0.00013	1/cm	,,,,,	,,,,,			
					COI Vel. (v _c)	0.00006	cm/sec					
					Degradation Rate (k)	0.0008	1/day					
					Dogradation rate (it)	0.000	iracy					
CPA-MW-1	PS03	2008 4th Quarter	11/20/2008	11.07	0	3,200	13,000	22,000	1,400	12,000	35,400	
CPA-MW-2	PS04	2008 4th Quarter	11/20/2008	12.54	840	2,000	33,000	2,400	640	14,000	17,040	
CPA-MW-3	PS07	2008 4th Quarter	11/24/2008	15.44	2215	53	420	13	. 1	.16	30	
CPA-MW-4	PS11	2008 4th Quarter	11/21/2008	29.55	3,660	810	220	18	5	21	44	
					Reduction Rate (m)	0.00002	0.00005	0.00007	0.00006	0.00010	1/cm	
					COI Vel. (v _c)	0.00006	0.00003	0.00002	0.00002	0.00002	cm/sec	
					Degradation Rate (k)	0.0001	0.0001	0.0001	0.0001	0.0002	1/day	
	4					1		177				lette .
BSA-MW-1	PS05	2009 1st Quarter	3/2/2009	17.82	0	830,000	2,500	2,500	2,500	2,500	7,500	4.85
BSA-MW-2	PS08	2009 1st Quarter	2/26/2009	22.27	1,060	20,000	2,900	100	100	5	205	4.85
					Reduction Rate (m)	0.00011	1/cm					
					COI Vel. (v _c)	0.00006	cm/sec					
					Degradation Rate (k)	0.0006	1/day					
CDA MIAI 4	Dena	2000 1et Ouerter	2/2/2000	10.44		4.000	16.000	20.000	1.400	12.000	22.400	000
CPA-MW-1	PS03 PS04	2009 1st Quarter	3/2/2009	12.41	0	4,200	16,000	20,000	1,400	12,000	33,400	660
CPA-MW-2 CPA-MW-3	PS04 PS07	2009 1st Quarter 2009 1st Quarter	3/2/2009 2/26/2009	14.07 16.75	840 2215	820 86	31,000 460	3,000	720	17,000 16	20,720 30	4.85
CPA-MW-4	PS11	2009 1st Quarter	2/25/2009	29.80	3,660	30	1,100	15	5	18	38	4.7
C. / (WIVV - T	1011	2000 13t Qualter	212012009	23.00	Reduction Rate (m)	0.00005	0.00003	0.00007	0.00006	0.00007	1/cm	4.00
					COI Vel. (v _c)	0.00005	0.00003	0.00007	0.00002	0.00007	cm/sec	
					Degradation Rate (k)	0.0000	0.00003	0.00002	0.00002	0.00002	1/day	

Page 1 of 7

Location	Point ID	Quarterly Effort	Sample Date	Water Level (Elev, ft.)	Distance (feet)	Benzene (ug/L)	Monochlorobenzene (ug/L)	1,2-Dichlorobenzene (ug/L)	1,3-Dichlorobenzene (ug/L)	1,4-Dichlorobenzene (ug/L)	Total Dichlorobenzene (ug/L)	1,2,4-Trichlorobenzene (ug/L)
BSA-MW-1	PS05	2009 2nd Quarter	6/4/2009	10.48	0	780,000	2,500	2,500	2,500	2,500	7,500	
BSA-MW-2	PS08	2009 2nd Quarter	6/3/2009	13.05	1,060	45,000	2,400	100	100	100	300	
					Reduction Rate (m)	0.00009	1/cm					
					COI Vel. (v _c)	0.00006	cm/sec					
					Degradation Rate (k)	0.0005	1/day					
		 			Degradation Nate (K)	0.0003	1/uay					
CPA-MW-1	PS03	2009 2nd Quarter	6/8/2009	6.75	0	3,300	17,000	29,000	1,800	16,000	46,800	
CPA-MW-2	PS04	2009 2nd Quarter	6/8/2009	6.87	840	320	37,000	420	350	11,000	11,770	
CPA-MW-3	PS07	2009 2nd Quarter	6/3/2009	7.35	2215	27	500	6	3	9	17	
CPA-MW-4	PS11	2009 2nd Quarter	6/3/2009	17.37	3,660	15	1,700	8	5	12	25	
	. 511		3,0,200		Reduction Rate (m)	0.00005	0.00003	0.00008	0.00006	0.00008	1/cm	
	-				COI Vel. (v _c)	0.00006	0.00003	0.00002	0.00002	0.00002	cm/sec	
					Degradation Rate (k)	0.0003	0.0001	0.0001	0.0001	0.0001	1/day	
	2.5	We consider the			Degradation Nate (k)	0.0003	0.0001	0.0001	0.0001	0.0001	17ddy	
BSA-MW-1	PS05	2009 2nd Quarter	6/4/2009	10.48	0	940,000	2,500	2,500	2,500	2,500	7,500	4.7
BSA-MW-2	PS08	2009 2nd Quarter	6/3/2009	13.05	1,060	72,000	5,000	100	100	100	300	4.7
2011.1111	. 000	2000 2110 Qualitor	0,0,200		Reduction Rate (m)	0.00008	3,000					
					COI Vel. (v _c)	0.00006						
					Degradation Rate (k)	0.0004						
		 			Degradation rate (k)	0.0004						
CPA-MW-1	PS03	2009 2nd Quarter	6/8/2009	6.75	0	5,000	16,000	18,000	1,200	11,000	30,200	740
CPA-MW-2	PS04	2009 2nd Quarter	6/8/2009	6.87	840	1,100	30,000	2,100	600	15,000	17,700	4.7
CPA-MW-3	PS07	2009 2nd Quarter	6/3/2009	7.35	2215	44	510	12	1	17	30	4.7
CPA-MW-4	PS11	2009 2nd Quarter	6/3/2009	17.37	3,660	12	1,100	14	5	19	33	4.7
					Reduction Rate (m)	0.00006	0.00003	0.00007	0.00006	0.00007	1/cm	
					COI Vel. (v _c)	0.00006	0.00003	0.00002	0.00002	0.00002	cm/sec	
					Degradation Rate (k)	0.0003	0.0001	0.0001	0.0001	0.0001	1/day	
BSA-MW-1	PS05	2009 2nd Quarter	6/4/2009	10.48	0	600,000	2,500	2,500	2,500	2,500	7,500	
BSA-MW-2	PS08	2009 2nd Quarter	6/3/2009	13.05	1,060	69,000	2,600	500	500	500	1,500	
				(Reduction Rate (m)	0.00007						
	×				COI Vel. (v _c)	0.00006						
					Degradation Rate (k)	0.0004				,		
					(1,7)			- 1				· ·
CPA-MW-1	PS03	2009 2nd Quarter	6/8/2009	6.75	0	6,000	15,000	18,000	1,300	11,000	30,300	
CPA-MW-2	PS04	2009 2nd Quarter	6/8/2009	6.87	840	710	26,000	1,800	500	13,000	15,300	
CPA-MW-3	PS07	2009 2nd Quarter	6/3/2009	7.35	2215	3	520	13	3	20	33	
CPA-MW-4	PS11	2009 2nd Quarter	6/3/2009	17.37	3,660	5	750	12	5	19	31	
					Reduction Rate (m)	0.00007	0.00004	0.00007	0.00006	0.00007	1/cm	
					COI Vel. (v _c)	0.00006	0.00003	0.00002	0.00002	0.00002	cm/sec	
					Degradation Rate (k)	0.0004	0.0001	0.0001	0.0001	0.0001	1/day	

Location	Point ID	Quarterly Effort	Sample Date	Water Level (Elev, ft.)	Distance (feet)	Benzene (ug/L)	Monochlorobenzene (ug/L)	1,2-Dichlorobenzene (ug/L)	1,3-Dichlorobenzene (ug/L)	1,4-Dichlorobenzene (ug/L)	Total Dichlorobenzene (ug/L)	1,2,4-Trichlorobenzene (ug/L)
BSA-MW-1	PS05	2009 2nd Quarter	6/4/2009	10.48	0	730,000	2,500	2,500	2,500	2,500	7,500	4.85
BSA-MW-2	PS08	2009 2nd Quarter	6/3/2009	13.05	1,060	150,000	2,700	500	500	500	1,500	4.75
					Reduction Rate (m)	0.00005						
					COI Vel. (v _c)	0.00006						
					Degradation Rate (k)	0.0003						
004 104 4	2000	2000 0 10 1	0/0/0000	0.75		7,000	40.000	00.000	4.700	44.000	07.700	070
CPA-MW-1	PS03	2009 2nd Quarter	6/8/2009	6.75	0	7,300	18,000	22,000	1,700	14,000	37,700	870 4.85
CPA-MW-2	PS04	2009 2nd Quarter	6/8/2009	6.87	840 2215	1,100	29,000	2,700	670 5	16,000	19,370 106	4.85
CPA-MW-3	PS07	2009 2nd Quarter	6/3/2009	7.35 17.37	3,660	180 37	660	37 23	5	64 35	58	4.7
CPA-MW-4	PS11	2009 2nd Quarter	6/3/2009	17.37	Reduction Rate (m)	0.00005	800 0.00004	0.00007	0.00006	0.00006	1/cm	4.1
					COI Vel. (v _c)	0.00006	0.00003	0.00002	0.00002	0.00002	cm/sec	
		Maria and a second second second			Degradation Rate (k)	0.0002	0.0001	0.0001	0.0001	0.0001	1/day	
BSA-MW-1	PS05	2010 2nd Quarter	5/19/2010	11.05	0	840,000	2,500	2,500	2,500	2,500	7,500	
BSA-MW-2	PS08	2010 2nd Quarter	5/25/2010	14.00	1,060	120,000	1,300	500	500	500	1,300	
					Reduction Rate (m)	0.00008						
					COI Vel. (v _c)	0.00006						
					Degradation Rate (k)	0.0004						
CDA MALA	DOOO	2040 25 4 200	E/00/0040	0.00	0	7.000	40,000	10,000	1.400	11.000	46 400	-
CPA-MW-1	PS03	2010 2nd Quarter	5/20/2010	6.99	0	7,200	16,000	18,000 440	1,400 290	11,000 8,500	46,400 39,230	
CPA-MW-2	PS04 PS07	2010 2nd Quarter	5/20/2010	7.13	840 2215	100 87	30,000 560	55	5.6	56	677	
CPA-MW-3 CPA-MW-4	PS11	2010 2nd Quarter 2010 2nd Quarter	5/26/2010 5/24/2010	8.35 19.49	3,660	39	920	42	5.6	40	1,002	
CFA-IVIVV-4	P311	2010 Zhu Quarter	3/24/2010	19.49	Reduction Rate (m)	0.00004	0.00003	0.00005	0.00006	0.00006	1,002 1/cm	
								0.00003	0.00000	0.00000		-
					COI Vel. (v _c)	0.00006	0.00003				cm/sec	-
					Degradation Rate (k)	0.0002	0.0001	0.0001	0.0001	0.0001	1/day	

Location	Point ID	Quarterly Effort	Nitrogen, Nitrate (mg/L)	Sulfate as SO4 (mg/L)	Alkalinity (mg/L)	Carbon Dioxide (mg/L)	Methane (ug/L)	Methane (mg/L)	Dissolved Oxygen (mg/L)	ORP (mV)	Total Iron (mg/L)	Dissolved Iron (mg/L) Assumed to be Fe ²⁺	Total Iron - Fe ²⁺ (mg/L) Assumed to be Fe ³⁺
BSA-MW-1	PS05	2008 3rd Quarter	0.03	130	870	21	10,000	10	0.57	-145.1	3.0	1.2	1.8
BSA-MW-2	PS08	2008 3rd Quarter	0.03	130	710	26	3,600	4	0.06	35.8	2.9	1.3	1.6
D3A-IVIVV-Z	F300	2000 Siu Quartei	0.05	130	710	20	3,000	4	0.00	33.0	2.5	1.0	1.0
CPA-MW-1	PS03	2008 3rd Quarter	0.25	14	1,200	1	21,000	21	0	-21.1	2.6	1.8	0.8
CPA-MW-2	PS04	2008 3rd Quarter	0.03	2.5	640	18	7,400	7	6.46	-105.6	5.8	5.5	0.3
CPA-MW-3	PS07	2008 3rd Quarter	0.03	12.5	690	48	8,800	9	0.29	1.9	18.0	18.0	0.0
CPA-MW-4	PS11	2008 3rd Quarter	0.03	2.5	830	27	12,000	12	0.63	-147.7	13.0	12.0	1.0
BSA-MW-1	PS05	2008 4th Quarter	0.03	2.5	930	32	5,800	6	6.87	-130.7	2.5	2.1	0.4
BSA-MW-2	PS08	2008 4th Quarter	0.03	110	660	29	3,300	3	5.8	-112	1.8	1.7	0.1
CPA-MW-1	PS03	2008 4th Quarter	0.25	13	1,100	2	15,000	15	0.25	2.5	1.7	1.4	0.3
CPA-MW-2	PS04	2008 4th Quarter	0.03	2.5	620	40	1,400	1	6.92	104.8	5.3	5.1	0.2
CPA-MW-3	PS07	2008 4th Quarter	0.03	3	690	56	33,000	33	6.09	-87	15.0	15.0	0.0
CPA-MW-4	PS11	2008 4th Quarter	0.03	2.5	770	15	9,000	9	6.39	-112.2	13.0	13.0	0.0
BSA-MW-1	PS05	2009 1st Quarter	0.13	2.5	050	22	44.000	11	10.24	-150.8	1.3	1.1	0.2
BSA-MW-2	PS08	2009 1st Quarter	0.13	160	850 700	17	11,000 3,200	3	7.13	-166.3	1.4	1.3	0.1
CPA-MW-1	PS03	2009 1st Quarter	0.25	5.7	1,100	3	30,000	30	9.26	-123.6	1.5	1.0	0.5
CPA-MW-2	PS04	2009 1st Quarter	0.03	2.5	610	25	2,800	3	13.43	-144	6.1	5.2	0.9
CPA-MW-3	PS07	2009 1st Quarter	0.03	3	690	49	30,000	30	6.15	-150.8	13.0	14.0	0.0
CPA-MW-4	PS11	2009 1st Quarter	0.03	72	810	23	48,000	48	4.95	-171.6	14.0	13.0	1.0
									No.				

Location	Point ID	Quarterly Effort	Nitrogen, Nitrate (mg/L)	Sulfate as SO4 (mg/L)	Alkalinity (mg/L)	Carbon Dioxide (mg/L)	Methane (ug/L)	Methane (mg/L)	Dissolved Oxygen (mg/L)	ORP (mV)	Total Iron (mg/L)	Dissolved Iron (mg/L) Assumed to be Fe ²⁺	Total Iron - Fe ^{2*} (mg/L) Assumed to be Fe ^{3*}
BSA-MW-1	PS05	2009 2nd Quarter	2.5	2.5	960	22	5,500	6	0.75	-77	1.2	0.9	0.3
BSA-MW-2	PS08	2009 2nd Quarter	0.07	2.5	760	37	20,000	20	0.55	-79.2	1.6	1.4	0.2
CPA-MW-1 CPA-MW-2	PS03 PS04	2009 2nd Quarter 2009 2nd Quarter	0.25 0.03	15 2.5	1,100 630	3 35	28,000 7,200	28	0.95 1.66	40.2	2.0	1.8	0.2
CPA-MW-3	PS07	2009 2nd Quarter	0.03	0.03	710	59	31,000	31	0.56	-104.5	15.0	15.0	0.0
CPA-MW-4	PS11	2009 2nd Quarter	0.19	2.5	850	40	3,200	3	0.73	-117	9.5	9.5	0.0
BSA-MW-1	PS05	2009 2nd Quarter	0.025	2.5	900	12	12,000	40	4.55	-142.2	1.8	1.6	0.2
BSA-MW-2	PS08	2009 2nd Quarter	0.025	2.5	700	18	13,000 11,000	13 11	1.18	-136	1.5	1.2	0.3
CPA-MW-1 CPA-MW-2	PS03 PS04	2009 2nd Quarter 2009 2nd Quarter	0.025 0.025	2.5	1,100 630	3	32,000 2,800	32	2.49 4.39	12.2	1.5 5.9	1.5 5.3	0.0
CPA-MW-3	PS07	2009 2nd Quarter	0.025	2.5	690	28	32,000	32	3.66	-137.2	14.0	14.0	0.0
CPA-MW-4	PS11	2009 2nd Quarter	0.025	2.5	850	50	5,300	5	0.83	-154.7	11.0	11.0	0.0
BSA-MW-1	PS05	2009 2nd Quarter	0.025	2.5	790	27	15,000	15	1.57	-155.0	2.2	1.7	0.5
BSA-MW-2	PS08	2009 2nd Quarter	0.025	2.5	670	37	15,000	15	1.12	-128	1.8	1.8	0.0
CPA-MW-1	PS03	2009 2nd Quarter	0.025	7.7	1,000	3	32,000	32	0.62	-197.2	1.3	1.2	0.1
CPA-MW-2	PS04	2009 2nd Quarter	0.025	2.5	530	36	2,600	3	1.75	-125.6	6.1	5.7	0.4
CPA-MW-3 CPA-MW-4	PS07 PS11	2009 2nd Quarter 2009 2nd Quarter	0.025 0.025	2.5 36	640 770	79 61	36,000 5,100	36 5	1.57	-131.4 -168.4	16.0 10.0	16.0 10.0	0.0

Location	Point ID	Quarterly Effort	Nitrogen, Nitrate (mg/L)	Sulfate as SO4 (mg/L)	Alkalinity (mg/L)	Carbon Dioxide (mg/L)	Methane (ug/L)	Methane (mg/L)	Dissolved Oxygen (mg/L)	ORP (mV)	Total Iron (mg/L)	Dissolved Iron (mg/L) Assumed to be Fe ²⁺	Total Iron - Fe ²⁺ (mg/L) Assumed to be Fe ³⁺
BSA-MW-1	PS05	2009 2nd Quarter	0.025	2.5	920	33	8,700	9	0.06	-145.9	2.4	2.2	0.2
BSA-MW-2	PS08	2009 2nd Quarter	0.025	2.5	700	57	9,100	9	0.09	-160.6	1.9	1.8	0.1
												•	
CPA-MW-1	PS03	2009 2nd Quarter	0.025	5.7	1,000	2.5	23,000	23	0.02	-66.6	1.2	1.0	0.2
CPA-MW-2	PS04	2009 2nd Quarter	0.025	2.5	610	36	2,200	2	0.19	-122.9	6.1	6.0	0.1
CPA-MW-3	PS07	2009 2nd Quarter	0.025	2.5	660	63	26,000	26	0.09	-137.9	15.0	14.0	1.0
CPA-MW-4	PS11	2009 2nd Quarter	0.025	2.5	810	43	6,000	6	0.2	-148.4	9.3	9.7	0.0
BSA-MW-1	PS05	2010 2nd Quarter	0.025	2.5	930	31	8,400	8	0.6	123.2	1.9	1.6	0.3
BSA-MW-2	PS08	2010 2nd Quarter	0.025	2.5	720	60	28,000	28	6.45	-92.5	3.2	3.0	0.2
CPA-MW-1	PS03	2010 2nd Quarter	0.025	2.5	1000	2.5	17,000	17	0.21	248.4	1.2	0.3	0.9
CPA-MW-2	PS04	2010 2nd Quarter	0.025	2.5	610	32	1,800	18	0.54	169.5	5.0	4.9	0.1
CPA-MW-3	PS07	2010 2nd Quarter	0.025	2.5	610	60	15,000	15	0.26	-98.2	14.0	12.0	2.0
CPA-MW-4	PS11	2010 2nd Quarter	0.025	2.5	2.5	2.5	4,000	4	6.8	103.4	9.5	9.1	0.4

ATTACHMENT C Evaluation of MNA Degradation 3Q08 through 2Q10

		5							
BSA Plume	Averages during MNA	Reduction Rate (m)	0.00009	1/cm	Range	0.00005	to	0.00013	1/cm
		COI Vel. (v_c)	0.00006	cm/sec	Range	0.00006	to	0.00006	cm/sec
		Degradation Rate (k)	0.00051	1/day	Range	0.00028	to	0.00075	1/day
CPA Plume - Benzene	Averages during MNA	Reduction Rate (m)	0.00004	1/cm	Range	0.00002	to	0.00007	1/cm
	3	COI Vel. (v _c)	0.00006	cm/sec	Range	0.00006	to	0.00006	cm/sec
		Degradation Rate (k)	0.00023	1/day	Range	0.00010	to	0.00036	1/day
CPA Plume - Chlorobenzene	Averages during MNA	Reduction Rate (m)	0.00004	1/cm	Range	0.00003	to	0.00005	1/cm
		COI Vel. (v _c)	0.00003	cm/sec	Range	0.00003	to	0.00003	cm/sec
		Degradation Rate (k)	0.00008	1/day	Range	0.00007	to	0.00010	1/day
CPA Plume - 1,2-Dichlorobenzene	Averages during MNA	Reduction Rate (m)	0.00007	1/cm	Range	0.00005	to	0.00008	1/cm
		COI Vel. (v _c)	0.00002	cm/sec	Range	0.00002	to	0.00002	cm/sec
		Degradation Rate (k)	0.00011	1/day	Range	0.00009	to	0.00013	1/day
CPA Plume - 1,3-Dichlorobenzene	Averages during MNA	Reduction Rate (m)	0.00006	1/cm	Dongo	0.00006	4.0	0.00007	4/000
O. 7.1. Idillo 1,0 District Obstiletile	Averages during wing	COI Vel. (v _c)	0.00000		Range		to	0.00007	1/cm
				cm/sec	Range	0.00002	to	0.00002	cm/sec
		Degradation Rate (k)	0.00011	1/day	Range	0.00010	to	0.00012	1/day
CPA Plume - 1,4-Dichlorobenzene	Averages during MNA	Reduction Rate (m)	0.00007	1/cm	Range	0.00006	to	0.00010	1/cm
		COI Vel. (v _c)	0.00002	cm/sec	Range	0.00002	to	0.00002	cm/sec
		Degradation Rate (k)	0.00014	1/day	Range	0.00011	to	0.00020	1/day